{"title":"IBAD-PLD法長尺YBCO線材の開発 —IBAD中間層上における自己配向PLD-CeO2キャップ層の長尺化—","authors":"岳海 室賀, 成紀 宮田, 智則 渡部, 顕 衣斐, 穣 山田, 輝郎 和泉, 融 塩原, 丈晴 加藤, 司 平山","doi":"10.2221/JCSJ.39.529","DOIUrl":null,"url":null,"abstract":"We found that a PLD-CeO2 cap layer on an IBAD-Gd2Zr2O7 (GZO) tape can make a high grain alignment without ion-beam assistance such as the IBAD process. We call this phenomenon “self-epitaxy in a PLD-CeO2 cap layer”. At present, we are developing long tapes by the Reel-to-Reel process for the self-epitaxial PLD-CeO2 cap layer on an IBAD-GZO tape. A 108 m-long tape with a PLD-CeO2 cap layer was obtained. The delta phi values of the buffer layer were improved to 4.3-4.8 degrees of PLD-CeO2 from 13.3-14.0 degrees of IBAD-GZO. Although the fabrication rate of the PLD-CeO2 cap layer was as fast as 5-6 m/h, that of the IBAD-GZO was 1 m/h. Then, we tried to improve the overall fabrication rate of the total buffer layers using a thin IBAD layer and the self-epitaxial PLD-CeO2 cap layer. A PLD-CeO2 cap layer was deposited at a tape transfer speed of 2.5 m/h on a 55 m-long IBAD-GZO tape with the delta phi values of 23.1-24.0 degrees fabricated at 2 m/h, which was two times faster than the conventional IBAD process. As a result, the delta phi values of the PLD-CeO2 cap layer were in the range of 8.6-10.4 degrees. The fabrication rate throughout all of the processes for buffer layers was achieved to be 2 m/h. It was found that PLD-CeO2 was effective for enhancing both the fabrication rate and grain alignment.","PeriodicalId":285677,"journal":{"name":"Teion Kogaku (journal of The Cryogenic Society of Japan)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teion Kogaku (journal of The Cryogenic Society of Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/JCSJ.39.529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We found that a PLD-CeO2 cap layer on an IBAD-Gd2Zr2O7 (GZO) tape can make a high grain alignment without ion-beam assistance such as the IBAD process. We call this phenomenon “self-epitaxy in a PLD-CeO2 cap layer”. At present, we are developing long tapes by the Reel-to-Reel process for the self-epitaxial PLD-CeO2 cap layer on an IBAD-GZO tape. A 108 m-long tape with a PLD-CeO2 cap layer was obtained. The delta phi values of the buffer layer were improved to 4.3-4.8 degrees of PLD-CeO2 from 13.3-14.0 degrees of IBAD-GZO. Although the fabrication rate of the PLD-CeO2 cap layer was as fast as 5-6 m/h, that of the IBAD-GZO was 1 m/h. Then, we tried to improve the overall fabrication rate of the total buffer layers using a thin IBAD layer and the self-epitaxial PLD-CeO2 cap layer. A PLD-CeO2 cap layer was deposited at a tape transfer speed of 2.5 m/h on a 55 m-long IBAD-GZO tape with the delta phi values of 23.1-24.0 degrees fabricated at 2 m/h, which was two times faster than the conventional IBAD process. As a result, the delta phi values of the PLD-CeO2 cap layer were in the range of 8.6-10.4 degrees. The fabrication rate throughout all of the processes for buffer layers was achieved to be 2 m/h. It was found that PLD-CeO2 was effective for enhancing both the fabrication rate and grain alignment.