Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM

Brian Plancher, C. Brumar, I. Brumar, Lillian Pentecost, Saketh Rama, D. Brooks
{"title":"Application of Approximate Matrix Multiplication to Neural Networks and Distributed SLAM","authors":"Brian Plancher, C. Brumar, I. Brumar, Lillian Pentecost, Saketh Rama, D. Brooks","doi":"10.1109/HPEC.2019.8916468","DOIUrl":null,"url":null,"abstract":"Computational efficiency is a critical constraint for a variety of cutting-edge real-time applications. In this work, we identify an opportunity to speed up the end-to-end runtime of two such compute bound applications by incorporating approximate linear algebra techniques. Particularly, we apply approximate matrix multiplication to artificial Neural Networks (NNs) for image classification and to the robotics problem of Distributed Simultaneous Localization and Mapping (DSLAM). Expanding upon recent sampling-based Monte Carlo approximation strategies for matrix multiplication, we develop updated theoretical bounds, and an adaptive error prediction strategy. We then apply these techniques in the context of NNs and DSLAM increasing the speed of both applications by 15-20% while maintaining a 97% classification accuracy for NNs running on the MNIST dataset and keeping the average robot position error under 1 meter (vs 0.32 meters for the exact solution). However, both applications experience variance in their results. This suggests that Monte Carlo matrix multiplication may be an effective technique to reduce the memory and computational burden of certain algorithms when used carefully, but more research is needed before these techniques can be widely used in practice.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Computational efficiency is a critical constraint for a variety of cutting-edge real-time applications. In this work, we identify an opportunity to speed up the end-to-end runtime of two such compute bound applications by incorporating approximate linear algebra techniques. Particularly, we apply approximate matrix multiplication to artificial Neural Networks (NNs) for image classification and to the robotics problem of Distributed Simultaneous Localization and Mapping (DSLAM). Expanding upon recent sampling-based Monte Carlo approximation strategies for matrix multiplication, we develop updated theoretical bounds, and an adaptive error prediction strategy. We then apply these techniques in the context of NNs and DSLAM increasing the speed of both applications by 15-20% while maintaining a 97% classification accuracy for NNs running on the MNIST dataset and keeping the average robot position error under 1 meter (vs 0.32 meters for the exact solution). However, both applications experience variance in their results. This suggests that Monte Carlo matrix multiplication may be an effective technique to reduce the memory and computational burden of certain algorithms when used carefully, but more research is needed before these techniques can be widely used in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似矩阵乘法在神经网络和分布式SLAM中的应用
计算效率是各种尖端实时应用的关键约束。在这项工作中,我们确定了通过结合近似线性代数技术来加速两个这样的计算绑定应用程序的端到端运行时的机会。特别是,我们将近似矩阵乘法应用于用于图像分类的人工神经网络(NNs)和分布式同时定位和映射(DSLAM)的机器人问题。在最近基于采样的蒙特卡罗近似矩阵乘法策略的基础上,我们开发了更新的理论界限和自适应误差预测策略。然后,我们将这些技术应用于nn和DSLAM的上下文中,将这两个应用程序的速度提高了15-20%,同时在MNIST数据集上运行的nn保持97%的分类精度,并将机器人的平均位置误差保持在1米以下(精确解决方案为0.32米)。然而,这两个应用程序的结果都存在差异。这表明,如果谨慎使用蒙特卡罗矩阵乘法,可能是一种有效的技术,可以减少某些算法的内存和计算负担,但在这些技术能够广泛应用于实践之前,还需要更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1