A Time-Dependent Reliability Estimation Method Based on Gaussian Process Regression

Han Wang, Zhang Xiaoling, Huang Xiesi, Haiqing Li
{"title":"A Time-Dependent Reliability Estimation Method Based on Gaussian Process Regression","authors":"Han Wang, Zhang Xiaoling, Huang Xiesi, Haiqing Li","doi":"10.1115/DETC2018-86294","DOIUrl":null,"url":null,"abstract":"This paper presents a time-dependent reliability estimation method for engineering system based on machine learning and simulation method. Due to the stochastic nature of the environmental loads and internal incentive, the physics of failure for mechanical system is complex, and it is challenging to include uncertainties for the physical modeling of failure in the engineered system’s life cycle. In this paper, an efficient time-dependent reliability assessment framework for mechanical system is proposed using a machine learning algorithm considering stochastic dynamic loads in the mechanical system. Firstly, stochastic external loads of mechanical system are analyzed, and the finite element model is established. Secondly, the physics of failure mode of mechanical system at a time location is analyzed, and the distribution of time realization under each load condition is calculated. Then, the distribution of fatigue life can be obtained based on high-cycle fatigue theory. To reduce the calculation cost, a machine learning algorithm is utilized for physical modeling of failure by integrating uniform design and Gaussian process regression. The probabilistic fatigue life of gear transmission system under different load conditions can be calculated, and the time-varying reliability of mechanical system is further evaluated. Finally, numerical examples and the fatigue reliability estimation of gear transmission system is presented to demonstrate the effectiveness of the proposed method.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-86294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a time-dependent reliability estimation method for engineering system based on machine learning and simulation method. Due to the stochastic nature of the environmental loads and internal incentive, the physics of failure for mechanical system is complex, and it is challenging to include uncertainties for the physical modeling of failure in the engineered system’s life cycle. In this paper, an efficient time-dependent reliability assessment framework for mechanical system is proposed using a machine learning algorithm considering stochastic dynamic loads in the mechanical system. Firstly, stochastic external loads of mechanical system are analyzed, and the finite element model is established. Secondly, the physics of failure mode of mechanical system at a time location is analyzed, and the distribution of time realization under each load condition is calculated. Then, the distribution of fatigue life can be obtained based on high-cycle fatigue theory. To reduce the calculation cost, a machine learning algorithm is utilized for physical modeling of failure by integrating uniform design and Gaussian process regression. The probabilistic fatigue life of gear transmission system under different load conditions can be calculated, and the time-varying reliability of mechanical system is further evaluated. Finally, numerical examples and the fatigue reliability estimation of gear transmission system is presented to demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程回归的时变可靠性估计方法
提出了一种基于机器学习和仿真方法的工程系统时变可靠性估计方法。由于环境载荷和内部激励的随机性,机械系统失效的物理性质是复杂的,在工程系统生命周期中包含不确定性的失效物理建模是一项挑战。本文利用机器学习算法,考虑机械系统随机动态载荷,提出了一种高效的机械系统时变可靠性评估框架。首先对机械系统的随机外载荷进行了分析,建立了有限元模型;其次,分析了机械系统在某一时间点失效模式的物理特性,计算了各载荷工况下的时间实现分布;然后,根据高周疲劳理论,得到其疲劳寿命分布。为了降低计算成本,采用均匀设计和高斯过程回归相结合的机器学习算法对故障进行物理建模。计算了齿轮传动系统在不同载荷条件下的概率疲劳寿命,并进一步评估了机械系统的时变可靠性。最后,通过数值算例和齿轮传动系统的疲劳可靠性估计,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Electricity Grid As an Agent-Based Market System: Exploring the Effects of Policy on Sustainability Ontology-Based Unified Representation of Dynamic Simulation Models in Engineering Design Reducing Evaluation Cost for Circuit Synthesis Using Active Learning Computational Design of a Personalized Artificial Spinal Disc for Additive Manufacturing With Physiological Rotational Motions Short-Term Load Forecasting With Different Aggregation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1