A Quantum-inspired Particle Swarm Optimization K-means++ Clustering Algorithm

Chun Hua
{"title":"A Quantum-inspired Particle Swarm Optimization K-means++ Clustering Algorithm","authors":"Chun Hua","doi":"10.1109/SSCI50451.2021.9659549","DOIUrl":null,"url":null,"abstract":"Hybrid clustering algorithm that combine the swarm intelligence algorithm and K-means is widely used in clustering areas. Such as But, the hybrid particle swarm optimization clustering algorithm, the hybrid genetic clustering algorithm and ant colony algorithm. In which, the hybrid particle swarm optimization algorithm clustering algorithm may appear empty cluster in the iteration process, which will result in a bad clustering results. To improve this phenomenon, we combine the particle swarm algorithm with K-means++ (PSOK-means++), to some extent, which improve the clustering result. But, empty clusters may appear during the iteration of PSOK-means++, as a remedy, we introduce the empty-cluster-reassignment technique and use it to modify particle swarm optimization K-means++, resulting in a particle swarm optimization K-means++ clustering algorithm with empty cluster reassignment (EPSOK-means++). Furthermore, we combine the EPSOK-means++ with quantum computing theory, referred to as QEPSOK-means++ clustering algorithm. The experimental results show that QEPSOK-means++ is effective and promising.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hybrid clustering algorithm that combine the swarm intelligence algorithm and K-means is widely used in clustering areas. Such as But, the hybrid particle swarm optimization clustering algorithm, the hybrid genetic clustering algorithm and ant colony algorithm. In which, the hybrid particle swarm optimization algorithm clustering algorithm may appear empty cluster in the iteration process, which will result in a bad clustering results. To improve this phenomenon, we combine the particle swarm algorithm with K-means++ (PSOK-means++), to some extent, which improve the clustering result. But, empty clusters may appear during the iteration of PSOK-means++, as a remedy, we introduce the empty-cluster-reassignment technique and use it to modify particle swarm optimization K-means++, resulting in a particle swarm optimization K-means++ clustering algorithm with empty cluster reassignment (EPSOK-means++). Furthermore, we combine the EPSOK-means++ with quantum computing theory, referred to as QEPSOK-means++ clustering algorithm. The experimental results show that QEPSOK-means++ is effective and promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子启发粒子群优化k -means++聚类算法
结合群智能算法和K-means的混合聚类算法在聚类领域得到了广泛的应用。如混合粒子群优化聚类算法、混合遗传聚类算法和蚁群算法等。其中,混合粒子群优化算法的聚类算法在迭代过程中可能出现空聚类,从而导致聚类结果不佳。为了改善这一现象,我们将粒子群算法与k -means++ (psok -means++)相结合,在一定程度上改善了聚类结果。针对psok -means++迭代过程中可能出现空簇的问题,本文引入空簇重分配技术,对粒子群优化算法k -means++进行改进,得到了一种具有空簇重分配的粒子群优化k -means++聚类算法(epsok -means++)。此外,我们将epsok -means++与量子计算理论相结合,称为qepsok -means++聚类算法。实验结果表明,qepsok -means++是有效的、有发展前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1