{"title":"Temporal And Spatial Analysis Of Inductively Coupled Atmospheric Pressure Plasma","authors":"A. Gulec, F. Bozduman, L. Oksuz, A. Hala","doi":"10.1109/PLASMA.2017.8496077","DOIUrl":null,"url":null,"abstract":"An atmospheric pressure inductively coupled plasma (ICP) was obtained by 13.56 MHz rf power. A 3 turn copper coil wrapped around a quartz tube 140 mm length and 16 mm inner diameter. 9 mm tungsten wire was inserted into the tube as an igniter and grounded. As a preliminary experimental study, the optical emission spectroscopy (OES) was used to obtain the electron temperature and density values of the argon plasma. In this study the atmospheric pressure ICP simulation will be carried out by COMSOL at different flow rate of argon and rf power values. The electron temperature and the density of plasma will be compared by the experimental results. Also the spatio-temporal evaluation of these parameters will be given. Rf cycle dependency of plasma parameters will be discussed.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An atmospheric pressure inductively coupled plasma (ICP) was obtained by 13.56 MHz rf power. A 3 turn copper coil wrapped around a quartz tube 140 mm length and 16 mm inner diameter. 9 mm tungsten wire was inserted into the tube as an igniter and grounded. As a preliminary experimental study, the optical emission spectroscopy (OES) was used to obtain the electron temperature and density values of the argon plasma. In this study the atmospheric pressure ICP simulation will be carried out by COMSOL at different flow rate of argon and rf power values. The electron temperature and the density of plasma will be compared by the experimental results. Also the spatio-temporal evaluation of these parameters will be given. Rf cycle dependency of plasma parameters will be discussed.