Study of Transistor Metrics for Room-Temperature Screening of Single Electron Transistors for Silicon Spin Qubit Applications

Francesco Lorenzelli, A. Elsayed, C. Godfrin, A. Grill, S. Kubicek, Ruoyu Li, M. Stucchi, D. Wan, K. D. Greve, E. Marinissen, G. Gielen
{"title":"Study of Transistor Metrics for Room-Temperature Screening of Single Electron Transistors for Silicon Spin Qubit Applications","authors":"Francesco Lorenzelli, A. Elsayed, C. Godfrin, A. Grill, S. Kubicek, Ruoyu Li, M. Stucchi, D. Wan, K. D. Greve, E. Marinissen, G. Gielen","doi":"10.1109/ETS56758.2023.10173954","DOIUrl":null,"url":null,"abstract":"Quantum computers aim at solving computationally hard tasks exponentially faster than classical computers. Among the different platforms that are candidate for the realization of a large-scale fault-tolerant quantum computer, Si spin qubits are one of the most promising, due to their manufacturability and long coherence times. Spin qubits operate in a 3He/4He dilution refrigerator, featuring extremely low operating temperatures (tens of millikelvin) as well as long cool-down times. Testing at cryogenic temperature is extremely expensive, not only due to the required equipment and the long cool-down time, but also due to the limited number of packaged devices that can be tested in a single cool-down cycle. Our research aims at defining a parametric test routine for high-volume room-temperature screening of MOS Si spin qubit arrays, to select good candidates for cryogenic temperature testing. In this paper we measure Single Electron Transistors (SETs), that represent the overall quality of the array, and report experimental results to investigate which transistor metrics are more relevant for the device screening, comparing room-temperature data at 295K to 4K and 40mK data.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10173954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computers aim at solving computationally hard tasks exponentially faster than classical computers. Among the different platforms that are candidate for the realization of a large-scale fault-tolerant quantum computer, Si spin qubits are one of the most promising, due to their manufacturability and long coherence times. Spin qubits operate in a 3He/4He dilution refrigerator, featuring extremely low operating temperatures (tens of millikelvin) as well as long cool-down times. Testing at cryogenic temperature is extremely expensive, not only due to the required equipment and the long cool-down time, but also due to the limited number of packaged devices that can be tested in a single cool-down cycle. Our research aims at defining a parametric test routine for high-volume room-temperature screening of MOS Si spin qubit arrays, to select good candidates for cryogenic temperature testing. In this paper we measure Single Electron Transistors (SETs), that represent the overall quality of the array, and report experimental results to investigate which transistor metrics are more relevant for the device screening, comparing room-temperature data at 295K to 4K and 40mK data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于硅自旋量子比特单电子晶体管室温筛选的晶体管指标研究
量子计算机旨在以指数级的速度比经典计算机解决计算困难的任务。在实现大规模容错量子计算机的候选平台中,硅自旋量子比特是最有前途的平台之一,因为它们的可制造性和长相干时间。自旋量子位在3He/4He稀释冰箱中工作,具有极低的工作温度(数十毫开尔文)和较长的冷却时间。在低温下进行测试是非常昂贵的,这不仅是因为所需的设备和较长的冷却时间,而且还因为在单个冷却循环中可以测试的封装设备数量有限。我们的研究旨在为MOS Si自旋量子比特阵列的大批量室温筛选定义一个参数测试程序,以选择低温测试的良好候选者。在本文中,我们测量了代表阵列整体质量的单电子晶体管(set),并报告了实验结果,以研究哪些晶体管指标与器件筛选更相关,比较了295K的室温数据与4K和40mK的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1