Learning Sample Importance for Cross-Scenario Video Temporal Grounding

P. Bao, Yadong Mu
{"title":"Learning Sample Importance for Cross-Scenario Video Temporal Grounding","authors":"P. Bao, Yadong Mu","doi":"10.1145/3512527.3531403","DOIUrl":null,"url":null,"abstract":"The task of temporal grounding aims to locate video moment in an untrimmed video, with a given sentence query. This paper for the first time investigates some superficial biases that are specific to the temporal grounding task, and proposes a novel targeted solution. Most alarmingly, we observe that existing temporal ground models heavily rely on some biases (e.g., high preference on frequent concepts or certain temporal intervals) in the visual modal. This leads to inferior performance when generalizing the model in cross-scenario test setting. To this end, we propose a novel method called Debiased Temporal Language Localizer (Debias-TLL) to prevent the model from naively memorizing the biases and enforce it to ground the query sentence based on true inter-modal relationship. Debias-TLL simultaneously trains two models. By our design, a large discrepancy of these two models' predictions when judging a sample reveals higher probability of being a biased sample. Harnessing the informative discrepancy, we devise a data re-weighing scheme for mitigating the data biases. We evaluate the proposed model in cross-scenario temporal grounding, where the train / test data are heterogeneously sourced. Experiments show large-margin superiority of the proposed method in comparison with state-of-the-art competitors.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The task of temporal grounding aims to locate video moment in an untrimmed video, with a given sentence query. This paper for the first time investigates some superficial biases that are specific to the temporal grounding task, and proposes a novel targeted solution. Most alarmingly, we observe that existing temporal ground models heavily rely on some biases (e.g., high preference on frequent concepts or certain temporal intervals) in the visual modal. This leads to inferior performance when generalizing the model in cross-scenario test setting. To this end, we propose a novel method called Debiased Temporal Language Localizer (Debias-TLL) to prevent the model from naively memorizing the biases and enforce it to ground the query sentence based on true inter-modal relationship. Debias-TLL simultaneously trains two models. By our design, a large discrepancy of these two models' predictions when judging a sample reveals higher probability of being a biased sample. Harnessing the informative discrepancy, we devise a data re-weighing scheme for mitigating the data biases. We evaluate the proposed model in cross-scenario temporal grounding, where the train / test data are heterogeneously sourced. Experiments show large-margin superiority of the proposed method in comparison with state-of-the-art competitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习样本对跨场景视频时间接地的重要性
时间基础的任务是在给定的句子查询中定位未修剪视频中的视频时刻。本文首次研究了时间接地任务的一些表面偏差,并提出了一种新的有针对性的解决方案。最令人担忧的是,我们观察到现有的时间基础模型严重依赖于视觉模态中的一些偏差(例如,对频繁概念或特定时间间隔的高度偏好)。当在跨场景测试设置中泛化模型时,这会导致较差的性能。为此,我们提出了一种新的方法,称为Debias-TLL (Debias-TLL),以防止模型天真地记忆偏差,并强制其基于真实的多模态关系来构建查询句子。Debias-TLL同时训练两个模型。根据我们的设计,当判断一个样本时,这两个模型的预测有很大的差异,表明有偏样本的可能性更高。利用信息差异,我们设计了一种数据重加权方案来减轻数据偏差。我们在列车/测试数据来源不同的跨场景时间接地中评估了所提出的模型。实验表明,与最先进的竞争对手相比,所提出的方法具有较大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1