Truss Design and Optimization Using Stress Analysis and NURBS Curves

A. Caputi, M. Cohen, C. Rizzi, D. Russo
{"title":"Truss Design and Optimization Using Stress Analysis and NURBS Curves","authors":"A. Caputi, M. Cohen, C. Rizzi, D. Russo","doi":"10.1115/IMECE2018-87728","DOIUrl":null,"url":null,"abstract":"This paper presents a novel design methodology, which combines topology and shape optimization to define material distribution in the structural design of a truss. Firstly, in order to identify the best layout, the topology optimization process in the design domain is carried out by applying the BESO (Bidirectional Evolutionary Structural Optimization) method. In this approach, the low energy elements are eliminated from an initial mesh, and a new geometry is constructed. This new geometry consists of a set of elements with a higher elastic energy. This results in a new division of material providing different zones, some subjected to higher stress and others containing less elastic energy. Moreover, the elements of the final mesh are re-arranged and modified, considering the distribution of tension. This new arrangement is constructed by aligning and rotating the original mesh elements coherently to the principal directions. In the Shape Optimization stage, the resulting TO (Topology Optimization) geometry is refined. A process of replacing the tabular mesh is performed by rearranging the remaining elements. The vertices of the mesh are set as control polygon vertices and used as reference to define the NURBS (Non-Uniform Rational B-Spline) curves. This provides a parametric representation of the boundaries, outlining the high elastic energy zones. The final stage is the optimization of the continuous and analytically defined NURBS curve outlining the solid material domain. The Shape Optimization is carried out applying a gradient-based optimization method.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel design methodology, which combines topology and shape optimization to define material distribution in the structural design of a truss. Firstly, in order to identify the best layout, the topology optimization process in the design domain is carried out by applying the BESO (Bidirectional Evolutionary Structural Optimization) method. In this approach, the low energy elements are eliminated from an initial mesh, and a new geometry is constructed. This new geometry consists of a set of elements with a higher elastic energy. This results in a new division of material providing different zones, some subjected to higher stress and others containing less elastic energy. Moreover, the elements of the final mesh are re-arranged and modified, considering the distribution of tension. This new arrangement is constructed by aligning and rotating the original mesh elements coherently to the principal directions. In the Shape Optimization stage, the resulting TO (Topology Optimization) geometry is refined. A process of replacing the tabular mesh is performed by rearranging the remaining elements. The vertices of the mesh are set as control polygon vertices and used as reference to define the NURBS (Non-Uniform Rational B-Spline) curves. This provides a parametric representation of the boundaries, outlining the high elastic energy zones. The final stage is the optimization of the continuous and analytically defined NURBS curve outlining the solid material domain. The Shape Optimization is carried out applying a gradient-based optimization method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于应力分析和NURBS曲线的桁架设计与优化
本文提出了一种新的桁架结构设计方法,将拓扑优化和形状优化相结合来确定桁架结构的材料分布。首先,采用双向进化结构优化(BESO)方法,在设计域内进行拓扑优化,以确定最佳布局;在该方法中,从初始网格中剔除低能元素,并构造新的几何结构。这种新的几何结构由一组具有较高弹性能的元素组成。这导致了一种新的材料划分,提供不同的区域,一些承受更高的应力,而另一些包含更少的弹性能量。考虑张力分布,对最终网格单元进行了重新排列和修改。这种新的排列方式是通过将原有的网格元素对准主方向并将其连贯地旋转而形成的。在形状优化阶段,对生成的拓扑优化(TO)几何进行细化。替换表格网格的过程是通过重新排列剩余的元素来执行的。网格的顶点被设置为控制多边形顶点,并作为定义NURBS(非均匀有理b样条)曲线的参考。这提供了边界的参数表示,勾勒出高弹性能量区。最后阶段是连续的和解析定义的NURBS曲线概述固体材料领域的优化。采用基于梯度的优化方法进行形状优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering a Pool Ladder to Prevent Drownings in Above-Ground Pools Side Structure Integrity Research for Passenger Rail Equipment A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks Uncertainty Optimization Design of Vehicle Wheel Made of Long Glass Fiber Reinforced Thermoplastic Limit Load Analysis of As-Fabricated Pipe Bends With Low Ovality Under In-Plane Closing Moment Loading and Internal Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1