Sliding mode backpropagation: control theory applied to neural network learning

G. G. Parma, B. R. Menezes, A. Braga
{"title":"Sliding mode backpropagation: control theory applied to neural network learning","authors":"G. G. Parma, B. R. Menezes, A. Braga","doi":"10.1109/IJCNN.1999.832646","DOIUrl":null,"url":null,"abstract":"This paper shows two different methodologies, both based on sliding mode control to train multilayer perceptron. These two methods are compared with standard back propagation, momentum and RPROP algorithms. The results show that the use of this control theory can reduce the time to train multilayer perceptron and also provide an interesting tool to analyze the limits for the parameters involved in the algorithm.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.832646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper shows two different methodologies, both based on sliding mode control to train multilayer perceptron. These two methods are compared with standard back propagation, momentum and RPROP algorithms. The results show that the use of this control theory can reduce the time to train multilayer perceptron and also provide an interesting tool to analyze the limits for the parameters involved in the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑模反向传播:控制理论在神经网络学习中的应用
本文介绍了两种不同的方法,都是基于滑模控制来训练多层感知器。这两种方法与标准的反向传播、动量和RPROP算法进行了比较。结果表明,利用该控制理论可以减少多层感知器的训练时间,并为分析算法中涉及的参数的极限提供了一个有趣的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1