{"title":"AlN-on-Si MEMS resonator bounded by wide acoustic bandgap two-dimensional phononic crystal anchors","authors":"M. W. Siddiqi, Joshua E-Y Lee","doi":"10.1109/MEMSYS.2018.8346658","DOIUrl":null,"url":null,"abstract":"We report an AlN-on-Si Lamb wave resonator with a unique wide acoustic bandgap (ABG) phononic crystal (PnC) structure at its anchors that provides an almost 4-fold increase in quality factor (Q). We show that the wider ABG provides for greater suppression of anchor loss and thus higher Q relative to a narrower ABG. Compared to more common circular void PnC structures, the unique PnC structures presented herein based on solid disks offer a 9-fold increase in the ABG size (82MHz vs. 9MHz) at a similar center frequency around 142MHz. The measured improvements in Q over multiple devices are consistent with finite element simulations on tuning the ABG size.","PeriodicalId":400754,"journal":{"name":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2018.8346658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We report an AlN-on-Si Lamb wave resonator with a unique wide acoustic bandgap (ABG) phononic crystal (PnC) structure at its anchors that provides an almost 4-fold increase in quality factor (Q). We show that the wider ABG provides for greater suppression of anchor loss and thus higher Q relative to a narrower ABG. Compared to more common circular void PnC structures, the unique PnC structures presented herein based on solid disks offer a 9-fold increase in the ABG size (82MHz vs. 9MHz) at a similar center frequency around 142MHz. The measured improvements in Q over multiple devices are consistent with finite element simulations on tuning the ABG size.
我们报道了一种具有独特的宽声带隙(ABG)声子晶体(PnC)结构的硅铝Lamb波谐振器,其锚点处的质量因子(Q)增加了近4倍。我们表明,更宽的ABG提供了更大的锚点损失抑制,因此相对于更窄的ABG, Q更高。与更常见的圆孔PnC结构相比,本文提出的基于固体磁盘的独特PnC结构在类似的中心频率约为142MHz时,ABG尺寸增加了9倍(82MHz vs 9MHz)。在多个设备上测量到的Q的改进与调整ABG尺寸的有限元模拟一致。