A container-based elastic cloud architecture for real-time full-motion video (FMV) target tracking

Ryan Wu, Yu Chen, Erik Blasch, Bingwei Liu, Genshe Chen, Dan Shen
{"title":"A container-based elastic cloud architecture for real-time full-motion video (FMV) target tracking","authors":"Ryan Wu, Yu Chen, Erik Blasch, Bingwei Liu, Genshe Chen, Dan Shen","doi":"10.1109/AIPR.2014.7041896","DOIUrl":null,"url":null,"abstract":"Full-motion video (FMV) target tracking requires the objects of interest be detected in a continuous video stream. Maintaining a stable track can be challenging as target attributes change over time, frame-rates can vary, and image alignment errors may drift. As such, optimizing FMV target tracking performance to address dynamic scenarios is critical. Many target tracking algorithms do not take advantage of parallelism due to dependencies on previous estimates which results in idle computation resources when waiting for such dependencies to resolve. To address this problem, a container-based virtualization technology is adopted to make more efficient use of computing resources for achieving an elastic information fusion cloud. In this paper, we leverage the benefits provided by container-based virtualization to optimize an FMV target tracking application. Using OpenVZ as the virtualization platform, we parallelize video processing by distributing incoming frames across multiple containers. A concurrent container partitions video stream into frames and then resembles processed frames into video output. We implement a system that dynamically allocates VE computing resources to match frame production and consumption between VEs. The experimental results verify the viability of container-based virtualization for improving FMV target tracking performance and demostrates a solution for mission-critical information fusion tasks.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Full-motion video (FMV) target tracking requires the objects of interest be detected in a continuous video stream. Maintaining a stable track can be challenging as target attributes change over time, frame-rates can vary, and image alignment errors may drift. As such, optimizing FMV target tracking performance to address dynamic scenarios is critical. Many target tracking algorithms do not take advantage of parallelism due to dependencies on previous estimates which results in idle computation resources when waiting for such dependencies to resolve. To address this problem, a container-based virtualization technology is adopted to make more efficient use of computing resources for achieving an elastic information fusion cloud. In this paper, we leverage the benefits provided by container-based virtualization to optimize an FMV target tracking application. Using OpenVZ as the virtualization platform, we parallelize video processing by distributing incoming frames across multiple containers. A concurrent container partitions video stream into frames and then resembles processed frames into video output. We implement a system that dynamically allocates VE computing resources to match frame production and consumption between VEs. The experimental results verify the viability of container-based virtualization for improving FMV target tracking performance and demostrates a solution for mission-critical information fusion tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于容器的实时全动态视频(FMV)目标跟踪弹性云架构
全动态视频(FMV)目标跟踪要求在连续视频流中检测到感兴趣的目标。由于目标属性随时间变化,帧率可能变化,并且图像对齐错误可能漂移,因此保持稳定的跟踪可能具有挑战性。因此,优化FMV目标跟踪性能以应对动态场景至关重要。由于依赖于先前的估计,许多目标跟踪算法没有利用并行性,这导致在等待这些依赖项解决时产生空闲的计算资源。针对这一问题,采用基于容器的虚拟化技术,更有效地利用计算资源,实现弹性信息融合云。在本文中,我们利用基于容器的虚拟化提供的优势来优化FMV目标跟踪应用程序。使用OpenVZ作为虚拟化平台,我们通过在多个容器中分发传入帧来并行处理视频。并发容器将视频流划分为帧,然后将处理过的帧类似于视频输出。我们实现了一个动态分配VE计算资源的系统,以匹配VE之间的帧生产和消耗。实验结果验证了基于容器的虚拟化技术提高FMV目标跟踪性能的可行性,并为关键任务信息融合任务提供了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1