Chunli Wang, Botao Zeng, Jin-Chao Gao, Ge Peng, Wei Yang
{"title":"A traffic image semantic segmentation algorithm based on UNET","authors":"Chunli Wang, Botao Zeng, Jin-Chao Gao, Ge Peng, Wei Yang","doi":"10.1117/12.2671074","DOIUrl":null,"url":null,"abstract":"In recent years, the traffic image semantic segmentation plays a crucial role in automatic driving. The result of semantic segmentation will directly affect the car's understanding of the external scene. Thus, a semantic segmentation algorithm based on UNET network model is proposed for getting better results in traffic images segmentation. To prove the effectiveness of the proposed algorithm, highway driving dataset is used on the experiments. The experimental results show that the proposed network can achieve high precision image semantic segmentation in complex road scenes, and the segmentation accuracy is greatly improved compared with other network models.","PeriodicalId":227528,"journal":{"name":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Computer Engineering (ICAICE 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the traffic image semantic segmentation plays a crucial role in automatic driving. The result of semantic segmentation will directly affect the car's understanding of the external scene. Thus, a semantic segmentation algorithm based on UNET network model is proposed for getting better results in traffic images segmentation. To prove the effectiveness of the proposed algorithm, highway driving dataset is used on the experiments. The experimental results show that the proposed network can achieve high precision image semantic segmentation in complex road scenes, and the segmentation accuracy is greatly improved compared with other network models.