Using rhythm awareness in long-term activity recognition

Kristof Van Laerhoven, David Kilian, B. Schiele
{"title":"Using rhythm awareness in long-term activity recognition","authors":"Kristof Van Laerhoven, David Kilian, B. Schiele","doi":"10.1109/ISWC.2008.4911586","DOIUrl":null,"url":null,"abstract":"This paper reports on research where users' activities are logged for extended periods by wrist-worn sensors. These devices operated for up to 27 consecutive days, day and night, while logging features from motion, light, and temperature. This data, labeled via 24-hour self-recall annotation, is explored for occurrences of daily activities. An evaluation shows that using a model of the users' rhythms can improve recognition of daily activities significantly within the logged data, compared to models that exclusively use the sensor data for activity recognition.","PeriodicalId":336550,"journal":{"name":"2008 12th IEEE International Symposium on Wearable Computers","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th IEEE International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2008.4911586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

This paper reports on research where users' activities are logged for extended periods by wrist-worn sensors. These devices operated for up to 27 consecutive days, day and night, while logging features from motion, light, and temperature. This data, labeled via 24-hour self-recall annotation, is explored for occurrences of daily activities. An evaluation shows that using a model of the users' rhythms can improve recognition of daily activities significantly within the logged data, compared to models that exclusively use the sensor data for activity recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在长期活动识别中使用节奏意识
这篇论文报道了一项研究,通过手腕上的传感器长时间记录用户的活动。这些设备可以连续工作27天,不分昼夜,同时记录运动、光线和温度等特征。这些数据通过24小时自我回忆注释进行标记,用于探索日常活动的发生情况。一项评估表明,与专门使用传感器数据进行活动识别的模型相比,使用用户节律模型可以显著提高对日志数据中日常活动的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sustained logging and discrimination of sleep postures with low-level, wrist-worn sensors Discovering human routines from cell phone data with topic models Towards a Virtual Coach for manual wheelchair users Stop burdening your eyes: A wearable electro-tactile display AstroWheelie: A wheelchair based exercise game
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1