BAYESIAN ANALYSIS UNDER UNBALANCED AND BALANCED LOSS FUNCTIONS APPLYING DIFFERENT PRIOR INFORMATIONS

I.N. Benatallah, H. Talhi, H. Aiachi, N. Khodja
{"title":"BAYESIAN ANALYSIS UNDER UNBALANCED AND BALANCED LOSS FUNCTIONS APPLYING DIFFERENT PRIOR INFORMATIONS","authors":"I.N. Benatallah, H. Talhi, H. Aiachi, N. Khodja","doi":"10.37418/amsj.12.2.1","DOIUrl":null,"url":null,"abstract":"In this paper, We perform a Bayesian analysis of Zeghdoudi distribution based on type II censored data. Using two type of loss functions; balanced and unbalanced loss functions, we use three different loss functions. this estimation includes three cases of prior informations; availability and lack of primary information, we obtain Bayes estimators and the corresponding posterior risks. the analytical forms of these estimators are out of reach, so, we propose Markov chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the parameters of the model,we obtain maximum likelihood estimators. Furthermore, we compare their performance with those of the Bayesian estimators using balanced and unbalanced loss functions.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, We perform a Bayesian analysis of Zeghdoudi distribution based on type II censored data. Using two type of loss functions; balanced and unbalanced loss functions, we use three different loss functions. this estimation includes three cases of prior informations; availability and lack of primary information, we obtain Bayes estimators and the corresponding posterior risks. the analytical forms of these estimators are out of reach, so, we propose Markov chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the parameters of the model,we obtain maximum likelihood estimators. Furthermore, we compare their performance with those of the Bayesian estimators using balanced and unbalanced loss functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不同先验信息的非平衡和平衡损失函数下的贝叶斯分析
在本文中,我们对基于II型截尾数据的Zeghdoudi分布进行贝叶斯分析。采用两类损失函数;平衡和不平衡损失函数,我们使用三种不同的损失函数。该估计包括三种先验信息;得到贝叶斯估计量和相应的后验风险。由于这些估计量的解析形式难以达到,因此,我们提出了马尔可夫链蒙特卡罗(MCMC)方法。此外,给定模型参数的初始值,我们得到了极大似然估计。此外,我们将它们与使用平衡和非平衡损失函数的贝叶斯估计器的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NOVEL METHOD FOR SOLVING FULLY FUZZY SOLID TRANSPORTATIONS PROBLEMS SINGULAR INTEGRAL EQUATIONS FOR A CRACK SUBJECTED NORMAL STRESS IN A HEATED PLATE ORTHOGONAL GENERALIZED ( 𝜎 , 𝜏 ) (σ,τ)-DERIVATIONS IN SEMIPRIME Γ Γ-NEAR RINGS SOME CHARACTERIZATIONS OF TIMELIKE HELICES WITH THE $F$-CONSTANT VECTOR FIELD IN MINKOWSKI SPACE $E_{1}^{3}$} DIFFERENTIABILITY IN THE FRECHET SENSE OF A FUNCTIONAL RELATED TO A HYPERBOLIC PROBLEM WITH POLYNOMIAL NONLINEARITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1