Control of Doubly-Fed Induction Generator System Using PIDNNs

F. Lin, Jonq-Chin Hwang, K. Tan, Zong-Han Lu, Yung-Ruei Chang
{"title":"Control of Doubly-Fed Induction Generator System Using PIDNNs","authors":"F. Lin, Jonq-Chin Hwang, K. Tan, Zong-Han Lu, Yung-Ruei Chang","doi":"10.1109/ICMLA.2010.104","DOIUrl":null,"url":null,"abstract":"An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency power system when the electricity grid fails for all sub-synchronous, synchronous and super-synchronous conditions. The rotor side converter is controlled using the field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the stator side converter, which is also controlled using field-oriented control, is primarily implemented to maintain the magnitude of the DC-link voltage. Furthermore, the intelligent PIDNN controller is proposed for both the rotor and stator side converters to improve the transient and steady-state responses of the DFIG system for different operating conditions. Both the network structure and on-line learning algorithm are introduced in detail. Finally, the feasibility of the proposed control scheme is verified through experimentation.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An intelligent control stand-alone doubly-fed induction generator (DFIG) system using proportional-integral-derivative neural network (PIDNN) is proposed in this study. This system can be applied as a stand-alone power supply system or as the emergency power system when the electricity grid fails for all sub-synchronous, synchronous and super-synchronous conditions. The rotor side converter is controlled using the field-oriented control to produce three-phase stator voltages with constant magnitude and frequency at different rotor speeds. Moreover, the stator side converter, which is also controlled using field-oriented control, is primarily implemented to maintain the magnitude of the DC-link voltage. Furthermore, the intelligent PIDNN controller is proposed for both the rotor and stator side converters to improve the transient and steady-state responses of the DFIG system for different operating conditions. Both the network structure and on-line learning algorithm are introduced in detail. Finally, the feasibility of the proposed control scheme is verified through experimentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用pidnn控制双馈感应发电机系统
提出了一种基于比例-积分-导数神经网络(PIDNN)的单机双馈感应发电机(DFIG)智能控制系统。该系统既可以作为独立供电系统,也可以作为电网故障时的应急供电系统,适用于所有分同步、同步和超同步工况。转子侧变换器采用磁场定向控制,在不同转子转速下产生定幅恒频三相定子电压。此外,定子侧转换器也采用磁场定向控制,主要用于维持直流链路电压的大小。在此基础上,针对转子侧变换器和定子侧变换器提出了智能PIDNN控制器,以改善DFIG系统在不同工况下的暂态和稳态响应。详细介绍了网络结构和在线学习算法。最后,通过实验验证了所提控制方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1