Model Predictive Torque Control with low Torque Ripple for Interior PM Motor Variable Speed Drives

A. Sarigiannidis, F. Karamountzou, A. Kladas
{"title":"Model Predictive Torque Control with low Torque Ripple for Interior PM Motor Variable Speed Drives","authors":"A. Sarigiannidis, F. Karamountzou, A. Kladas","doi":"10.1109/ICELMACH.2018.8506909","DOIUrl":null,"url":null,"abstract":"This paper proposes a discrete Model Predictive Torque Control (MPTC) methodology, utilizing low torque ripple for Interior Permanent Magnet Motor (IPMM). The proposed controller utilizes a non-linear accurate discrete IPMM model, as well as a convenient cost function, in order to achieve optimal tracking control over wide speed range. More specifically, Maximum Torque per Ampere (MTPA) and Field Weakening (FW) operating principles are imposed via particular terms in the cost function. Typically, the switching principle of MPC in voltage-source inverter causes significant torque ripple. The designed MPTC forces the produced electromagnetic torque to remain within certain tolerance bands, through a specific constraint. The developed IPMM control technique is evaluated and compared with relevant MPTC approach without torque ripple limitation, under both steady state and dynamic operating conditions. The obtained results verify the superiority of MPTC in terms of robustness and dynamic behavior, as well as its effectiveness in reducing the IPMM torque ripple.","PeriodicalId":292261,"journal":{"name":"2018 XIII International Conference on Electrical Machines (ICEM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XIII International Conference on Electrical Machines (ICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELMACH.2018.8506909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a discrete Model Predictive Torque Control (MPTC) methodology, utilizing low torque ripple for Interior Permanent Magnet Motor (IPMM). The proposed controller utilizes a non-linear accurate discrete IPMM model, as well as a convenient cost function, in order to achieve optimal tracking control over wide speed range. More specifically, Maximum Torque per Ampere (MTPA) and Field Weakening (FW) operating principles are imposed via particular terms in the cost function. Typically, the switching principle of MPC in voltage-source inverter causes significant torque ripple. The designed MPTC forces the produced electromagnetic torque to remain within certain tolerance bands, through a specific constraint. The developed IPMM control technique is evaluated and compared with relevant MPTC approach without torque ripple limitation, under both steady state and dynamic operating conditions. The obtained results verify the superiority of MPTC in terms of robustness and dynamic behavior, as well as its effectiveness in reducing the IPMM torque ripple.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内置式永磁电机变速传动低转矩脉动模型预测转矩控制
提出了一种基于低转矩脉动的离散模型预测转矩控制(MPTC)方法。该控制器采用了精确的非线性离散IPMM模型和方便的代价函数,以实现大速度范围内的最优跟踪控制。更具体地说,每安培最大扭矩(MTPA)和磁场减弱(FW)的工作原则是通过成本函数中的特定条款强加的。通常情况下,电压源逆变器中MPC的开关原理会导致明显的转矩脉动。设计的MPTC通过特定的约束,使产生的电磁扭矩保持在一定的公差范围内。在稳态和动态工况下,对所开发的IPMM控制技术进行了评价和比较,并对无转矩脉动限制的MPTC控制方法进行了比较。仿真结果验证了MPTC在鲁棒性和动态性能方面的优越性,以及它在减小IPMM转矩脉动方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Fault- Tolerant PM Motors with Independent Phases by Finite Element Method Hybrid Modeling Method of Magnetic Field of Axial Flux Permanent Magnet Machine Design of Low Power Motors with a Good Compromise Between Ripple Torque and Radial Forces Joint Design of Halbach Segmented Array and Distributed Stator Winding Comparative Design Analysis of Three-Phase Switched Reluctance Generators for Micro-Wind Power Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1