Computational load reduction in model predictive control of nonlinear systems via decomposition

Saeed Adelipour, Mahdi Rastgar, M. Haeri
{"title":"Computational load reduction in model predictive control of nonlinear systems via decomposition","authors":"Saeed Adelipour, Mahdi Rastgar, M. Haeri","doi":"10.1109/ICCIAUTOM.2017.8258681","DOIUrl":null,"url":null,"abstract":"The aim of this study is to reduce the computational load in model predictive control of multi-input nonlinear systems. First, the nonlinear system which has a high number of states and inputs is decomposed into several subsystems by solving a linear integer programming problem offline. Then, the model of each subsystem is revised by considering the effect of coupling and interactions of other subsystems. Next, the robust model predictive technique based on linear matrix inequalities is employed to compute control signal for each subsystem. An industrial chemical reaction example is used to illustrate the effectiveness of the proposed method.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this study is to reduce the computational load in model predictive control of multi-input nonlinear systems. First, the nonlinear system which has a high number of states and inputs is decomposed into several subsystems by solving a linear integer programming problem offline. Then, the model of each subsystem is revised by considering the effect of coupling and interactions of other subsystems. Next, the robust model predictive technique based on linear matrix inequalities is employed to compute control signal for each subsystem. An industrial chemical reaction example is used to illustrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分解的非线性系统模型预测控制的计算负荷减少
本研究的目的在于减少多输入非线性系统模型预测控制的计算量。首先,通过离线求解线性整数规划问题,将具有大量状态和输入的非线性系统分解为多个子系统。然后,考虑各子系统之间的耦合和相互作用,对各子系统的模型进行修正。其次,采用基于线性矩阵不等式的鲁棒模型预测技术计算各子系统的控制信号;最后用一个工业化学反应实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete linear quadratic control of uncertain switched system Fractional order adaptive fuzzy terminal sliding mode controller design for a knee joint orthosis with nonlinear disturbance observer Kalman filter based sensor fault detection and identification in an electro-pump system Comparison of iterative and recursive algorithms for identifying a solar power plant system State estimation of VTOL octorotor for altitude control by using hybrid extended Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1