A Study on Atomics-based Integer Sum Reduction in HIP on AMD GPU

Zheming Jin, J. Vetter
{"title":"A Study on Atomics-based Integer Sum Reduction in HIP on AMD GPU","authors":"Zheming Jin, J. Vetter","doi":"10.1145/3547276.3548627","DOIUrl":null,"url":null,"abstract":"Integer sum reduction is a primitive operation commonly used in scientific computing. Implementing a parallel reduction on a GPU often involves concurrent memory accesses using atomic operations and synchronization of work-items in a work-group. For a better understanding of these operations, we redesigned micro-kernels in the HIP programming language to measure the time of atomic operations over global memory, the cost of barrier synchronization, and reduction within a work-group to shared local memory using one atomic addition per work-item on a compute unit in an AMD MI100 GPU. Then, we describe the implementations of the reduction kernels with vectorized memory accesses, parameterized workload sizes, and vendor's library APIs. Our experimental results show that 1) there is a performance tradeoff between the cost of barrier synchronization and the amount of parallelism from atomic operations over shared local memory when we increase the size of a work-group. 2) a reduction kernel with vectorized memory accesses and vector data types is approximately 3% faster for the large problem size than the kernels written with the vendor's library APIs. 3) the compiler needs to assist the hardware processor with data dependency resolution at the level of instruction set architecture. 4) the power consumption of the kernel execution on the GPU fluctuates between 277 Watts and 301 Watts and the dynamic power of other GPU activities is at most 31 Watts.","PeriodicalId":255540,"journal":{"name":"Workshop Proceedings of the 51st International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3547276.3548627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integer sum reduction is a primitive operation commonly used in scientific computing. Implementing a parallel reduction on a GPU often involves concurrent memory accesses using atomic operations and synchronization of work-items in a work-group. For a better understanding of these operations, we redesigned micro-kernels in the HIP programming language to measure the time of atomic operations over global memory, the cost of barrier synchronization, and reduction within a work-group to shared local memory using one atomic addition per work-item on a compute unit in an AMD MI100 GPU. Then, we describe the implementations of the reduction kernels with vectorized memory accesses, parameterized workload sizes, and vendor's library APIs. Our experimental results show that 1) there is a performance tradeoff between the cost of barrier synchronization and the amount of parallelism from atomic operations over shared local memory when we increase the size of a work-group. 2) a reduction kernel with vectorized memory accesses and vector data types is approximately 3% faster for the large problem size than the kernels written with the vendor's library APIs. 3) the compiler needs to assist the hardware processor with data dependency resolution at the level of instruction set architecture. 4) the power consumption of the kernel execution on the GPU fluctuates between 277 Watts and 301 Watts and the dynamic power of other GPU activities is at most 31 Watts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AMD GPU上基于原子的HIP整数和约简研究
整数和约简是科学计算中常用的一种基本运算。在GPU上实现并行缩减通常涉及使用原子操作和工作组中工作项同步的并发内存访问。为了更好地理解这些操作,我们重新设计了HIP编程语言中的微内核,以测量全局内存上原子操作的时间、屏障同步的成本,以及在AMD MI100 GPU的计算单元上使用每个工作项的原子加法来减少工作组内共享本地内存。然后,我们用向量化内存访问、参数化工作负载大小和供应商的库api描述了缩减内核的实现。我们的实验结果表明,1)当我们增加工作组的大小时,屏障同步的成本和共享本地内存上原子操作的并行性之间存在性能权衡。2)具有向量化内存访问和矢量数据类型的精简内核在处理大型问题时比使用供应商的库api编写的内核快约3%。3)编译器需要协助硬件处理器在指令集体系结构层面进行数据依赖解析。4) GPU上内核执行的功耗在277瓦到301瓦之间波动,其他GPU活动的动态功耗最多为31瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Software/Hardware Co-design Local Irregular Sparsity Method for Accelerating CNNs on FPGA A Fast and Secure AKA Protocol for B5G Execution Flow Aware Profiling for ROS-based Autonomous Vehicle Software A User-Based Bike Return Algorithm for Docked Bike Sharing Systems Extracting High Definition Map Information from Aerial Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1