Recognition of Time Expressions in Spanish Electronic Health Records

Marjan Najafabadipour, M. Zanin, A. R. González, C. Gonzalo-Martín, B. García, V. Calvo, J. L. Cruz-Bermúdez, M. Provencio, Ernestina Menasalvas Ruiz
{"title":"Recognition of Time Expressions in Spanish Electronic Health Records","authors":"Marjan Najafabadipour, M. Zanin, A. R. González, C. Gonzalo-Martín, B. García, V. Calvo, J. L. Cruz-Bermúdez, M. Provencio, Ernestina Menasalvas Ruiz","doi":"10.1109/CBMS.2019.00025","DOIUrl":null,"url":null,"abstract":"The widespread adoption of Electronic Health Records (EHRs) is generating an ever-increasing amount of unstructured clinical texts. Processing time expressions from these domain-specific-texts is crucial for the discovery of patterns that can help in the detection of medical events and building the patient's natural history. In medical domain, the recognition of time information from texts is challenging due to their lack of structure; usage of various formats, styles and abbreviations; their domain specific nature; writing quality; and the presence of ambiguous expressions. Furthermore, despite of Spanish occupying the second position in the world ranking of number of native speakers, to the best of our knowledge, no Natural Language Processing (NLP) tools have been introduced for the recognition of time expressions from clinical texts, written in this particular language. Therefore, in this paper, we propose a Temporal Tagger for identifying and normalizing time expressions appeared in Spanish clinical texts. We further compare our Temporal Tagger with the Spanish version of SUTime. By using a large dataset comprising EHRs of people suffering from lung cancer, we show that our developed Temporal Tagger, with an F1 score of 0.93, outperforms SUTime, with an F1 score of 0.797.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The widespread adoption of Electronic Health Records (EHRs) is generating an ever-increasing amount of unstructured clinical texts. Processing time expressions from these domain-specific-texts is crucial for the discovery of patterns that can help in the detection of medical events and building the patient's natural history. In medical domain, the recognition of time information from texts is challenging due to their lack of structure; usage of various formats, styles and abbreviations; their domain specific nature; writing quality; and the presence of ambiguous expressions. Furthermore, despite of Spanish occupying the second position in the world ranking of number of native speakers, to the best of our knowledge, no Natural Language Processing (NLP) tools have been introduced for the recognition of time expressions from clinical texts, written in this particular language. Therefore, in this paper, we propose a Temporal Tagger for identifying and normalizing time expressions appeared in Spanish clinical texts. We further compare our Temporal Tagger with the Spanish version of SUTime. By using a large dataset comprising EHRs of people suffering from lung cancer, we show that our developed Temporal Tagger, with an F1 score of 0.93, outperforms SUTime, with an F1 score of 0.797.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西班牙电子健康记录中时间表达式的识别
电子健康记录(EHRs)的广泛采用正在产生越来越多的非结构化临床文本。处理来自这些领域特定文本的时间表达式对于发现有助于检测医疗事件和构建患者自然病史的模式至关重要。在医学领域,文本时间信息的识别由于缺乏结构而具有挑战性;使用各种格式、样式和缩写;它们的领域特殊性;写作质量;以及歧义表达的存在。此外,尽管西班牙语在世界上以西班牙语为母语的人数排名第二,但据我们所知,还没有引入自然语言处理(NLP)工具来识别用这种特定语言编写的临床文本中的时间表达式。因此,在本文中,我们提出了一个时间标记器来识别和规范化西班牙临床文本中出现的时间表达。我们进一步将我们的时间标记器与西班牙语版的SUTime进行比较。通过使用包含肺癌患者电子病历的大型数据集,我们发现我们开发的Temporal Tagger的F1得分为0.93,优于SUTime的F1得分为0.797。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1