{"title":"A 42mW 26–28 GHz phased-array receive channel with 12 dB gain, 4 dB NF and 0 dBm IIP3 in 45nm CMOS SOI","authors":"Umut Kodak, Gabriel M. Rebeiz","doi":"10.1109/RFIC.2016.7508324","DOIUrl":null,"url":null,"abstract":"This paper presents a low-power 26-28 GHz phased-array receive channel in 45nm CMOS SOI. The design alternates cascode amplifiers with switched-LC phase-shifter cells to result in 5-bit phase control with gain and rms phase error <; 0.6 dB and 4°, respectively, over 32 phase states. The measured gain, noise figure (NF) and IIP3 are 12.2 dB, 4 dB and 0 dBm, respectively, and are achieved at a DC power of 42 mW. A gain control of 6-dB is also available without affecting the system NF. To our knowledge, this represents state-of-the-art in mm-wave phased-arrays with the best published linearity at low NF. Application areas include 5G base-stations and hand-held units.","PeriodicalId":163595,"journal":{"name":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2016.7508324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
This paper presents a low-power 26-28 GHz phased-array receive channel in 45nm CMOS SOI. The design alternates cascode amplifiers with switched-LC phase-shifter cells to result in 5-bit phase control with gain and rms phase error <; 0.6 dB and 4°, respectively, over 32 phase states. The measured gain, noise figure (NF) and IIP3 are 12.2 dB, 4 dB and 0 dBm, respectively, and are achieved at a DC power of 42 mW. A gain control of 6-dB is also available without affecting the system NF. To our knowledge, this represents state-of-the-art in mm-wave phased-arrays with the best published linearity at low NF. Application areas include 5G base-stations and hand-held units.