Leveraging Entity Linking and Related Language Projection to Improve Name Transliteration

NEWS@ACM Pub Date : 1900-01-01 DOI:10.18653/v1/W16-2701
Ying Lin, Xiaoman Pan, Aliya Deri, Heng Ji, Kevin Knight
{"title":"Leveraging Entity Linking and Related Language Projection to Improve Name Transliteration","authors":"Ying Lin, Xiaoman Pan, Aliya Deri, Heng Ji, Kevin Knight","doi":"10.18653/v1/W16-2701","DOIUrl":null,"url":null,"abstract":"Traditional name transliteration methods largely ignore source context information and inter-dependency among entities for entity disambiguation. We propose a novel approach to leverage state-of-the-art Entity Linking (EL) techniques to automatically correct name transliteration results, using collective inference from source contexts and additional evidence from knowledge base. Experiments on transliterating names from seven languages to English demonstrate that our approach achieves 2.6% to 15.7% absolute gain over the baseline model, and significantly advances state-of-the-art. When contextual information exists, our approach can achieve further gains (24.2%) by collectively transliterating and disambiguating multiple related entities. We also prove that combining Entity Linking and projecting resources from related languages obtained comparable performance as themethod using the same amount of training pairs in the original languageswithout Entity Linking.1","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Traditional name transliteration methods largely ignore source context information and inter-dependency among entities for entity disambiguation. We propose a novel approach to leverage state-of-the-art Entity Linking (EL) techniques to automatically correct name transliteration results, using collective inference from source contexts and additional evidence from knowledge base. Experiments on transliterating names from seven languages to English demonstrate that our approach achieves 2.6% to 15.7% absolute gain over the baseline model, and significantly advances state-of-the-art. When contextual information exists, our approach can achieve further gains (24.2%) by collectively transliterating and disambiguating multiple related entities. We also prove that combining Entity Linking and projecting resources from related languages obtained comparable performance as themethod using the same amount of training pairs in the original languageswithout Entity Linking.1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用实体链接和相关语言投射来提高姓名音译
传统的名称音译方法在消除实体歧义时,很大程度上忽略了源上下文信息和实体之间的相互依赖关系。我们提出了一种新的方法,利用最先进的实体链接(EL)技术,使用来自源上下文的集体推理和来自知识库的额外证据,自动纠正名称音译结果。将七种语言的名字音译为英语的实验表明,我们的方法比基线模型获得了2.6%到15.7%的绝对增益,并且显著提高了最先进的技术水平。当上下文信息存在时,我们的方法可以通过集体音译和消除多个相关实体的歧义来获得进一步的收益(24.2%)。我们还证明,结合实体链接并从相关语言中投射资源的方法与在原始语言中使用相同数量的训练对而不使用实体链接的方法获得了相当的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source named entity typing for social media Applying Neural Networks to English-Chinese Named Entity Transliteration Regulating Orthography-Phonology Relationship for English to Thai Transliteration Spanish NER with Word Representations and Conditional Random Fields German NER with a Multilingual Rule Based Information Extraction System: Analysis and Issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1