Empirical estimation of functional relationships between Q value of the L-GEM and training data using genetic programming

Zhi-Qian Huang, Wing W. Y. Ng
{"title":"Empirical estimation of functional relationships between Q value of the L-GEM and training data using genetic programming","authors":"Zhi-Qian Huang, Wing W. Y. Ng","doi":"10.1109/ICMLC.2012.6358937","DOIUrl":null,"url":null,"abstract":"The Localized Generalization Error Model (L-GEM) provides a practical framework for evaluating generalization capability of a learning machine , e.g. neural network. The Q value of the L-GEM controls the coverage of unseen samples under evaluation. Owing to the nonlinear and real unknown relationship of unseen samples and their generalization error, different Q values yield different L-GEM values. In this paper, we adopt an evolutionary procedure based on genetic programming and artificial datasets to estimate functional relationship between Q values and statistics of training samples. In this first empirical study, a simple training samples generated from two two-dimensional Gaussian distribution is adopted. Resulting formulae provide hints to select optimal Q value for given classification problems.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6358937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Localized Generalization Error Model (L-GEM) provides a practical framework for evaluating generalization capability of a learning machine , e.g. neural network. The Q value of the L-GEM controls the coverage of unseen samples under evaluation. Owing to the nonlinear and real unknown relationship of unseen samples and their generalization error, different Q values yield different L-GEM values. In this paper, we adopt an evolutionary procedure based on genetic programming and artificial datasets to estimate functional relationship between Q values and statistics of training samples. In this first empirical study, a simple training samples generated from two two-dimensional Gaussian distribution is adopted. Resulting formulae provide hints to select optimal Q value for given classification problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传规划的L-GEM Q值与训练数据之间函数关系的经验估计
局部泛化误差模型(L-GEM)为评估学习机器(如神经网络)的泛化能力提供了一个实用的框架。L-GEM的Q值控制未被评估样品的覆盖率。由于未见样本的非线性和真实未知关系及其泛化误差,不同的Q值产生不同的L-GEM值。本文采用一种基于遗传规划和人工数据集的进化方法来估计训练样本Q值与统计量之间的函数关系。在第一次实证研究中,我们采用了由两个二维高斯分布生成的简单训练样本。所得公式为给定分类问题选择最优Q值提供了提示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1