Touchless multiview fingerprint quality assessment: rotational bad-positioning detection using Artificial Neural Networks

Caue Zaghetto, A. Zaghetto, F. Vidal, Luiz H. M. Aguiar
{"title":"Touchless multiview fingerprint quality assessment: rotational bad-positioning detection using Artificial Neural Networks","authors":"Caue Zaghetto, A. Zaghetto, F. Vidal, Luiz H. M. Aguiar","doi":"10.1109/ICB.2015.7139101","DOIUrl":null,"url":null,"abstract":"This paper presents a method based on Artificial Neural Network that evaluates the rotational bad-positioning of fingers on touchless multiview fingerprinting devices. The objective is to determine whether the finger is rotated or not, since a proper positioning of the finger is mandatory for high fingerprint matching rates. A test set of 9000 acquired images has being used to train, validate and test the proposed multilayer Artificial Neural Network classifier. To our knowledge, there is no definitive method that addressed the problem of fingerprint quality on touchless multiview scanners. The proposed finger rotation detection here presented is one of the steps that must be taken into account if a future automatic image quality assessment method is to be considered. Average results show that: (a) our classifier correctly identifies bad-positioning in approximately 94% of cases; and (b) if bad-positioning is detected, the rotation angle is correctly estimated in 90% evaluations.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a method based on Artificial Neural Network that evaluates the rotational bad-positioning of fingers on touchless multiview fingerprinting devices. The objective is to determine whether the finger is rotated or not, since a proper positioning of the finger is mandatory for high fingerprint matching rates. A test set of 9000 acquired images has being used to train, validate and test the proposed multilayer Artificial Neural Network classifier. To our knowledge, there is no definitive method that addressed the problem of fingerprint quality on touchless multiview scanners. The proposed finger rotation detection here presented is one of the steps that must be taken into account if a future automatic image quality assessment method is to be considered. Average results show that: (a) our classifier correctly identifies bad-positioning in approximately 94% of cases; and (b) if bad-positioning is detected, the rotation angle is correctly estimated in 90% evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非接触式多视角指纹质量评估:基于人工神经网络的旋转不良定位检测
提出了一种基于人工神经网络的非接触式多视指纹识别设备手指旋转定位不良评价方法。目标是确定手指是否旋转,因为手指的正确位置对于高指纹匹配率是必需的。使用9000张采集图像的测试集来训练、验证和测试所提出的多层人工神经网络分类器。据我们所知,目前还没有明确的方法来解决非接触式多视图扫描仪上指纹质量的问题。如果要考虑未来的自动图像质量评估方法,这里提出的手指旋转检测是必须考虑的步骤之一。平均结果表明:(a)我们的分类器在大约94%的情况下正确识别出不良定位;(b)如果检测到定位不良,在90%的评估中正确估计了旋转角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1