PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS

C. Wang, Yang Song, Wee Peng Tay
{"title":"PRESERVING PARAMETER PRIVACY IN SENSOR NETWORKS","authors":"C. Wang, Yang Song, Wee Peng Tay","doi":"10.1109/GlobalSIP.2018.8646390","DOIUrl":null,"url":null,"abstract":"We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the problem of preserving the privacy of a set of private parameters while allowing inference of a set of public parameters based on observations from sensors in a network. We assume that the public and private parameters are correlated with the sensor observations via a linear model. We define the utility loss and privacy gain functions based on the Cramér-Rao lower bounds for estimating the public and private parameters, respectively. Our goal is to minimize the utility loss while ensuring that the privacy gain is no less than a predefined privacy gain threshold, by allowing each sensor to perturb its own observation before sending it to the fusion center. We propose methods to determine the amount of noise each sensor needs to add to its observation under the cases where prior information is available or unavailable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器网络中参数隐私保护
我们考虑保护一组私有参数的隐私性,同时允许基于网络中传感器的观测推断一组公共参数的问题。我们假设公共和私有参数通过线性模型与传感器观测相关联。我们定义了效用损失函数和隐私增益函数,分别基于cram - rao下界来估计公共参数和私有参数。我们的目标是最小化效用损失,同时确保隐私增益不小于预定义的隐私增益阈值,允许每个传感器在将其发送到融合中心之前干扰自己的观察结果。我们提出了在先验信息可用或不可用的情况下确定每个传感器需要添加到其观察中的噪声量的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1