D. Baimel, S. Tapuchi, S. Bronshtein, Y. Horen, N. Baimel
{"title":"Novel Segmentation Algorithm for Maximum Power Point Tracking in PV Systems Under Partial Shading Conditions","authors":"D. Baimel, S. Tapuchi, S. Bronshtein, Y. Horen, N. Baimel","doi":"10.1109/EPEPEMC.2018.8521880","DOIUrl":null,"url":null,"abstract":"The paper proposes new MPPT Segmentation method for partial shading conditions. The proposed method is based on principle of division of the power-voltage curve into uniform segments and location of global maximum power point inside the chosen segment. In order to validate the algorithm, it was tested under different shading condition and with different PV systems. The simulation results show that the Segmentation algorithm precisely identifies the highest MPP on the power-voltage curve. The Segmentation algorithm was compared with standard P&O and also with other MPPT algorithms for partial shading conditions. This comparison showed that Segmentation algorithm provides better results and insures higher output power of the PV system than standard P&O and also with other MPPT algorithms. Simulation results also show that Segmentation algorithm works faster than P&O.","PeriodicalId":251046,"journal":{"name":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2018.8521880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The paper proposes new MPPT Segmentation method for partial shading conditions. The proposed method is based on principle of division of the power-voltage curve into uniform segments and location of global maximum power point inside the chosen segment. In order to validate the algorithm, it was tested under different shading condition and with different PV systems. The simulation results show that the Segmentation algorithm precisely identifies the highest MPP on the power-voltage curve. The Segmentation algorithm was compared with standard P&O and also with other MPPT algorithms for partial shading conditions. This comparison showed that Segmentation algorithm provides better results and insures higher output power of the PV system than standard P&O and also with other MPPT algorithms. Simulation results also show that Segmentation algorithm works faster than P&O.