Music Mood Annotator Design and Integration

C. Laurier, O. Meyers, J. Serrà, Martin Blech, P. Herrera
{"title":"Music Mood Annotator Design and Integration","authors":"C. Laurier, O. Meyers, J. Serrà, Martin Blech, P. Herrera","doi":"10.1109/CBMI.2009.45","DOIUrl":null,"url":null,"abstract":"A robust and efficient technique for automatic music mood annotation is presented. A song's mood is expressed by a supervised machine learning approach based on musical features extracted from the raw audio signal. A ground truth, used for training, is created using both social network information systems and individual experts. Tests of 7 different classification configurations have been performed, showing that Support Vector Machines perform best for the task at hand. Moreover, we evaluate the algorithm robustness to different audio compression schemes. This fact, often neglected, is fundamental to build a system that is usable in real conditions. In addition, the integration of a fast and scalable version of this technique with the European Project PHAROS is discussed.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A robust and efficient technique for automatic music mood annotation is presented. A song's mood is expressed by a supervised machine learning approach based on musical features extracted from the raw audio signal. A ground truth, used for training, is created using both social network information systems and individual experts. Tests of 7 different classification configurations have been performed, showing that Support Vector Machines perform best for the task at hand. Moreover, we evaluate the algorithm robustness to different audio compression schemes. This fact, often neglected, is fundamental to build a system that is usable in real conditions. In addition, the integration of a fast and scalable version of this technique with the European Project PHAROS is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音乐情绪注释器的设计和集成
提出了一种鲁棒高效的音乐情绪自动标注技术。歌曲的情绪是通过一种基于从原始音频信号中提取的音乐特征的监督机器学习方法来表达的。一个用于培训的基本事实是由社会网络信息系统和个人专家共同创建的。对7种不同的分类配置进行了测试,表明支持向量机对手头的任务表现最好。此外,我们还评估了算法对不同音频压缩方案的鲁棒性。这个经常被忽视的事实是构建一个在实际条件下可用的系统的基础。此外,还讨论了该技术与欧洲项目PHAROS的快速和可扩展版本的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1