{"title":"WHOLE: A low energy I-Cache with separate way history","authors":"Zichao Xie, Dong Tong, Xu Cheng","doi":"10.1109/ICCD.2009.5413162","DOIUrl":null,"url":null,"abstract":"Set-associative instruction caches achieve low miss rates at the expense of significant energy dissipation. Previous energy-efficient approaches usually suffer from performance degradation and redundant extension bits. In this paper, we propose a Way History Oriented Low Energy Instruction Cache (WHOLE-Cache) design for single issue and in-order execution processors. The WHOLE-Cache design not only achieves a significant portion of energy reduction by effectively reducing dynamic energy dissipation of set-associative instruction cache, but also leads to no additional cycle penalties. Tag comparison results are stored into either the Branch Target Buffer (BTB) or the Instruction Cache (I-Cache) to avoid tag checks and unnecessary way activation for subsequent accesses to visited cache lines. The extended BTB uses way history bits for branch instructions, while the I-Cache extension bits are used in case of fetching consecutive instructions resided in different cache lines. A valid flag is associated with each stored tag comparison result to indicate whether the instruction to be fetched is resided in the recorded location. A simple invalidation scheme is implemented in the cache miss replacement operation. Whenever a cache line is replaced, the pointers to it, which reside in the BTB or other I-cache lines, will be invalidated accordingly. We model the WHOLE-Cache design in Verilog. By deriving basic parameters from TSMC 65nm technology, we use Wattch simulator to evaluate the performance and energy reduction of the WHOLE-Cache in the instruction fetch stage. We use SPEC2000 and Mediabench as benchmarks. It is observed that compared with a conventional 4-way set-associative I-Cache, the energy consumption of the WHOLE-Cache is reduced by 65% without any performance penalty.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Set-associative instruction caches achieve low miss rates at the expense of significant energy dissipation. Previous energy-efficient approaches usually suffer from performance degradation and redundant extension bits. In this paper, we propose a Way History Oriented Low Energy Instruction Cache (WHOLE-Cache) design for single issue and in-order execution processors. The WHOLE-Cache design not only achieves a significant portion of energy reduction by effectively reducing dynamic energy dissipation of set-associative instruction cache, but also leads to no additional cycle penalties. Tag comparison results are stored into either the Branch Target Buffer (BTB) or the Instruction Cache (I-Cache) to avoid tag checks and unnecessary way activation for subsequent accesses to visited cache lines. The extended BTB uses way history bits for branch instructions, while the I-Cache extension bits are used in case of fetching consecutive instructions resided in different cache lines. A valid flag is associated with each stored tag comparison result to indicate whether the instruction to be fetched is resided in the recorded location. A simple invalidation scheme is implemented in the cache miss replacement operation. Whenever a cache line is replaced, the pointers to it, which reside in the BTB or other I-cache lines, will be invalidated accordingly. We model the WHOLE-Cache design in Verilog. By deriving basic parameters from TSMC 65nm technology, we use Wattch simulator to evaluate the performance and energy reduction of the WHOLE-Cache in the instruction fetch stage. We use SPEC2000 and Mediabench as benchmarks. It is observed that compared with a conventional 4-way set-associative I-Cache, the energy consumption of the WHOLE-Cache is reduced by 65% without any performance penalty.