Strong higher order mutation-based test data generation

M. Harman, Yue Jia, W. Langdon
{"title":"Strong higher order mutation-based test data generation","authors":"M. Harman, Yue Jia, W. Langdon","doi":"10.1145/2025113.2025144","DOIUrl":null,"url":null,"abstract":"This paper introduces SHOM, a mutation-based test data generation approach that combines Dynamic Symbolic Execution and Search Based Software Testing. SHOM targets strong mutation adequacy and is capable of killing both first and higher order mutants. We report the results of an empirical study using 17 programs, including production industrial code from ABB and Daimler and open source code as well as previously studied subjects. SHOM achieved higher strong mutation adequacy than two recent mutation-based test data generation approaches, killing between 8% and 38% of those mutants left unkilled by the best performing previous approach.","PeriodicalId":184518,"journal":{"name":"ESEC/FSE '11","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESEC/FSE '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2025113.2025144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 150

Abstract

This paper introduces SHOM, a mutation-based test data generation approach that combines Dynamic Symbolic Execution and Search Based Software Testing. SHOM targets strong mutation adequacy and is capable of killing both first and higher order mutants. We report the results of an empirical study using 17 programs, including production industrial code from ABB and Daimler and open source code as well as previously studied subjects. SHOM achieved higher strong mutation adequacy than two recent mutation-based test data generation approaches, killing between 8% and 38% of those mutants left unkilled by the best performing previous approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强大的高阶基于突变的测试数据生成
本文介绍了基于动态符号执行和基于搜索的软件测试相结合的基于突变的测试数据生成方法SHOM。SHOM靶向强突变充足性,能够杀死一级和高阶突变体。我们报告了使用17个程序的实证研究结果,包括ABB和戴姆勒的生产工业代码和开源代码以及先前研究的主题。与最近的两种基于突变的测试数据生成方法相比,SHOM获得了更高的强突变充分性,杀死了8%至38%的未被先前最佳方法杀死的突变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semistructured merge: rethinking merge in revision control systems The 4th international workshop on social software engineering (SSE'11) Don't touch my code!: examining the effects of ownership on software quality SCORE: a scalable concolic testing tool for reliable embedded software Modeling the HTML DOM and browser API in static analysis of JavaScript web applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1