A processing approach for a correlating time-of-flight range sensor based on a least squares method

M. Hofbauer, J. Seiter, M. Davidović, H. Zimmermann
{"title":"A processing approach for a correlating time-of-flight range sensor based on a least squares method","authors":"M. Hofbauer, J. Seiter, M. Davidović, H. Zimmermann","doi":"10.1109/SAS.2014.6798975","DOIUrl":null,"url":null,"abstract":"A novel processing approach for the output data of a correlating time-of-flight range sensor based on a least squares method is presented. Until now, the fast Fourier transform and a trigonometric approach have been widely used to derive the distance information from the output signal of the sensor. Compared to these methods, the presented approach does not suffer from a systematic phase-dependent error for ideal signals. Moreover, this method allows the detection of multipath propagation, i.e., it is possible to detect if light from different distances is received at the same time. Under certain circumstances, it is even possible to extract the distances of the different paths. Simulation results are presented, comparing the performance of this novel approach to the existing ones. Moreover, first measurement results prove the feasibility of this method and show a reduction of the phase-dependent error by 90% compared to the alternative approaches.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel processing approach for the output data of a correlating time-of-flight range sensor based on a least squares method is presented. Until now, the fast Fourier transform and a trigonometric approach have been widely used to derive the distance information from the output signal of the sensor. Compared to these methods, the presented approach does not suffer from a systematic phase-dependent error for ideal signals. Moreover, this method allows the detection of multipath propagation, i.e., it is possible to detect if light from different distances is received at the same time. Under certain circumstances, it is even possible to extract the distances of the different paths. Simulation results are presented, comparing the performance of this novel approach to the existing ones. Moreover, first measurement results prove the feasibility of this method and show a reduction of the phase-dependent error by 90% compared to the alternative approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于最小二乘法的相关飞行时间距离传感器处理方法
提出了一种基于最小二乘法的相关飞行时间距离传感器输出数据处理方法。目前,从传感器输出信号中提取距离信息的方法主要是快速傅里叶变换和三角函数法。与这些方法相比,所提出的方法不受理想信号系统相位相关误差的影响。此外,该方法允许检测多径传播,即可以检测是否同时接收到来自不同距离的光。在某些情况下,甚至可以提取不同路径的距离。仿真结果表明,该方法与现有方法的性能进行了比较。此外,第一次测量结果证明了该方法的可行性,并且与其他方法相比,相位相关误差减少了90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-power wireless interface for handheld smart metering devices PointsBug versus TangentBug algorithm, a performance comparison in unknown static environment RFID coordinate registration for agricultural process sensing Standard Uncertainty estimation on polynomial regression models Design and simulation of a Micro Hotplate for MEMS based integrated gas sensing system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1