Hands Tracking over Steering Wheel based on Multi-Bernoulli Filter Framework with Hand Landmarks Detector and Semantic Segmentation

N. Ikoma
{"title":"Hands Tracking over Steering Wheel based on Multi-Bernoulli Filter Framework with Hand Landmarks Detector and Semantic Segmentation","authors":"N. Ikoma","doi":"10.1109/ICCAIS56082.2022.9990413","DOIUrl":null,"url":null,"abstract":"Car driver’s hands motion operating the steering-wheel in a car cabin has been tracked based on multi-Bernoulli filter framework with the aid of semantic segmentation for body region extraction and hand landmarks detection over camera image, according to the newly proposed method in this paper. Real-time implementation of the method has been proposed as a hybrid system of python and C/C++ languages with CUDA GPU computation for particle filtering, DeepLab v3 for semantic segmentation, and MediaPipe for hand landmarks detector. Experimental results demonstrate improved performance of hands tracking especially by newly incorporated part of the hand landmarks detector.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Car driver’s hands motion operating the steering-wheel in a car cabin has been tracked based on multi-Bernoulli filter framework with the aid of semantic segmentation for body region extraction and hand landmarks detection over camera image, according to the newly proposed method in this paper. Real-time implementation of the method has been proposed as a hybrid system of python and C/C++ languages with CUDA GPU computation for particle filtering, DeepLab v3 for semantic segmentation, and MediaPipe for hand landmarks detector. Experimental results demonstrate improved performance of hands tracking especially by newly incorporated part of the hand landmarks detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多伯努利滤波框架的手部特征检测和语义分割的方向盘手部跟踪
根据本文提出的方法,基于多伯努利滤波框架,结合语义分割提取人体区域和相机图像手部标志检测,对车内驾驶员操纵方向盘的手部运动进行跟踪。该方法的实时实现采用了python和C/ c++语言的混合系统,CUDA GPU计算用于粒子滤波,DeepLab v3用于语义分割,MediaPipe用于手部地标检测。实验结果表明,新加入的手部标记检测器提高了手部跟踪的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning A quadratic correlation algorithm with variable sets of lags for frequency estimation Deployment of UAVs for Optimal Multihop Ad-hoc Networks Using Particle Swarm Optimization and Behavior-based Control Analyze the Transient Overvoltages in the station of Vietnamese model HVDC-MMC system Dual-scale generalized Radon-Fourier transform family for long time coherent integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1