A FPGA-based embedded system for automatic classification of microcalcifications

T. A. Docusse, Alexandre César Rodrigues da Silva, Aledir Silveira Pereira, N. Marranghello
{"title":"A FPGA-based embedded system for automatic classification of microcalcifications","authors":"T. A. Docusse, Alexandre César Rodrigues da Silva, Aledir Silveira Pereira, N. Marranghello","doi":"10.1109/ICM.2013.6734972","DOIUrl":null,"url":null,"abstract":"This paper describes the development of an embedded system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Mich`ele Le Gal, a classification scheme that allows radiologists to decide whether a breast cancer is malignant or not without the need for surgeries. The hardware part of the developed system is based on an Altera Nios II software processor and the embedded software is based on wavelets and artificial neural networks. We have used an Altera DE2-115 development kit in order to create a custom System-on-Chip (SoC) that has many advantages over common desktop computers. In our tests the system correctly classified 94.90% of test images, proving it can be used as a second opinion by radiologists in breast cancer early diagnosis.","PeriodicalId":372346,"journal":{"name":"2013 25th International Conference on Microelectronics (ICM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2013.6734972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the development of an embedded system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Mich`ele Le Gal, a classification scheme that allows radiologists to decide whether a breast cancer is malignant or not without the need for surgeries. The hardware part of the developed system is based on an Altera Nios II software processor and the embedded software is based on wavelets and artificial neural networks. We have used an Altera DE2-115 development kit in order to create a custom System-on-Chip (SoC) that has many advantages over common desktop computers. In our tests the system correctly classified 94.90% of test images, proving it can be used as a second opinion by radiologists in breast cancer early diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga的微钙化自动分类嵌入式系统
本文描述了一种嵌入式系统的开发,该系统可以自动将数字乳房x线照片上检测到的微钙化分类为Mich 'ele Le Gal提出的五种类型之一,这种分类方案允许放射科医生在不需要手术的情况下确定乳腺癌是否恶性。该系统的硬件部分基于Altera Nios II软件处理器,嵌入式软件部分基于小波和人工神经网络。我们使用Altera DE2-115开发套件来创建自定义的片上系统(SoC),它比普通台式计算机具有许多优势。在我们的测试中,该系统正确分类了94.90%的测试图像,证明了它可以作为放射科医生在乳腺癌早期诊断中的第二意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IP cores design from specifications to production: Modeling, verification, optimization, and protection Adaptively Modulated Optical OFDM transmission using two cascaded SOAs for optical access networks Quantization and fixed-point arithmetic for MIMO MMSE-IC linear turbo-equalization Modeling of the coupling phenomenon between a transmission line and a near-field excitation Accurate modeling for CMOS inverter overshooting time in nanoscale paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1