{"title":"Observations and Particle-based Simulation of Air-entrainment around a Surface Piercing Cylinder","authors":"Junya Arai, T. Mori","doi":"10.2218/marine2021.6845","DOIUrl":null,"url":null,"abstract":"Flow and air-entrainment around a surface piercing circular cylinder has been investigated experimentally and numerically. In water tunnel experiments, high speed video observations were made for surface piercing flow around a circular cylinder of 150 mm in diameter. Surface pressure measurements were also carried out at nine points around the cylinder. Flow velocity was from 1.5 to 3.0 m/s. The high-speed video observations showed that a pair of air pocket was formed on the side of the cylinder, and bubbles entrained into the air-pockets are shed downstream. The depth of the air-pocket fluctuated in a frequency range lower than the typical Karman vortex frequency. For numerical study, unsteady motion of air-entrainment process was simulated by an MPS method with some corrections to pressure calculation. The MPS calculation reproduced the dynamics of the air-pockets on the side of the cylinder. The time-variation of the predicted air-pocked depth also showed low-frequency fluctuations as observed in the experiment.","PeriodicalId":367395,"journal":{"name":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2218/marine2021.6845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flow and air-entrainment around a surface piercing circular cylinder has been investigated experimentally and numerically. In water tunnel experiments, high speed video observations were made for surface piercing flow around a circular cylinder of 150 mm in diameter. Surface pressure measurements were also carried out at nine points around the cylinder. Flow velocity was from 1.5 to 3.0 m/s. The high-speed video observations showed that a pair of air pocket was formed on the side of the cylinder, and bubbles entrained into the air-pockets are shed downstream. The depth of the air-pocket fluctuated in a frequency range lower than the typical Karman vortex frequency. For numerical study, unsteady motion of air-entrainment process was simulated by an MPS method with some corrections to pressure calculation. The MPS calculation reproduced the dynamics of the air-pockets on the side of the cylinder. The time-variation of the predicted air-pocked depth also showed low-frequency fluctuations as observed in the experiment.