Fetal QRS Detection Based on Convolutional Neural Networks in Noninvasive Fetal Electrocardiogram

Jun Seong Lee, M. Seo, S. W. Kim, Minho Choi
{"title":"Fetal QRS Detection Based on Convolutional Neural Networks in Noninvasive Fetal Electrocardiogram","authors":"Jun Seong Lee, M. Seo, S. W. Kim, Minho Choi","doi":"10.1109/ICFSP.2018.8552074","DOIUrl":null,"url":null,"abstract":"Detection of fetal QRS complexes in a noninvasive fetal electrocardiogram (NI-FECG) signal is an important task to check fetal conditions and to prevent birth defects. However, the detection is not easy because the NI-FECG signal contains a maternal ECG signal that has greater amplitude than that of a fetal ECG signal. This paper proposes an algorithm to detect the fetal QRS complexes in the NI-FECG signal. The proposed algorithm is based on convolutional neural networks (CNN) and can reliably detect the fetal QRS complexes without separating the maternal ECG signal. To verify the algorithm, NI-FECG data (PhysioNet/computing in cardiology challenge 2013) were used. The proposed algorithm showed the average sensitivity of 89.06 % and positive predictive value of 92.77 %. The proposed algorithm can help to check fetal conditions and to prevent birth defects.","PeriodicalId":355222,"journal":{"name":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2018.8552074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Detection of fetal QRS complexes in a noninvasive fetal electrocardiogram (NI-FECG) signal is an important task to check fetal conditions and to prevent birth defects. However, the detection is not easy because the NI-FECG signal contains a maternal ECG signal that has greater amplitude than that of a fetal ECG signal. This paper proposes an algorithm to detect the fetal QRS complexes in the NI-FECG signal. The proposed algorithm is based on convolutional neural networks (CNN) and can reliably detect the fetal QRS complexes without separating the maternal ECG signal. To verify the algorithm, NI-FECG data (PhysioNet/computing in cardiology challenge 2013) were used. The proposed algorithm showed the average sensitivity of 89.06 % and positive predictive value of 92.77 %. The proposed algorithm can help to check fetal conditions and to prevent birth defects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的无创胎儿心电图QRS检测
在无创胎儿心电图(NI-FECG)信号中检测胎儿QRS复合物是检查胎儿状况和预防出生缺陷的重要任务。然而,检测并不容易,因为NI-FECG信号中含有比胎儿ECG信号幅度更大的母体ECG信号。本文提出了一种检测NI-FECG信号中胎儿QRS复合物的算法。该算法基于卷积神经网络(CNN),可以在不分离母体心电信号的情况下可靠地检测胎儿QRS复合物。为了验证该算法,使用了NI-FECG数据(PhysioNet/computing in cardiology challenge 2013)。该算法的平均灵敏度为89.06%,阳性预测值为92.77%。提出的算法可以帮助检查胎儿状况,防止出生缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-body Sensing and Signal Analysis for User Experience Recognition in Human-Machine Interaction Objective Approach of 3G/4G Networks Indoor RF Coverage Assessment Statistical Compressive Sensing for Efficient Signal Reconstruction and Classification Towards Empowering Cyber Attack Resiliency Using Steganography Filtering Nonuniformly Sampled Grid-Based Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1