Learning of Robotic Assembly based on Specially Adjustable Vibrations Parameters

L. Banjanović-Mehmedović, S. Karic, Z. Jasak
{"title":"Learning of Robotic Assembly based on Specially Adjustable Vibrations Parameters","authors":"L. Banjanović-Mehmedović, S. Karic, Z. Jasak","doi":"10.1109/ISSPIT.2008.4775662","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of autonomous learning in the problems of complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly and favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural network based learning algorithm, it is possible to find extended scope of vibration state parameter. Using deterministic search strategy based on minimal distance path action between vibration parameter stage sets and recovery parameter algorithm, we can improve the robot assembly behaviour, i.e. allow the fastest possible way of mating.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the use of autonomous learning in the problems of complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly and favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural network based learning algorithm, it is possible to find extended scope of vibration state parameter. Using deterministic search strategy based on minimal distance path action between vibration parameter stage sets and recovery parameter algorithm, we can improve the robot assembly behaviour, i.e. allow the fastest possible way of mating.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特殊可调振动参数的机器人装配学习
本文以某多级行星减速器齿轮配合为例,研究了自主学习在复杂机器人微型零件装配问题中的应用。指出了行星齿轮上管的装配是整体装配中最困难的问题,并指出了振动和旋转运动对公差补偿的有利影响。采用基于神经网络的学习算法,可以找到振动状态参数的扩展范围。采用基于振动参数阶段集之间最小距离路径作用的确定性搜索策略和恢复参数算法,可以改善机器人装配行为,即允许最快的匹配方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1