Brain computer interface approach using sensor covariance matrix with forced whitening

Hyuk-soo Shin, Wonzoo Chung
{"title":"Brain computer interface approach using sensor covariance matrix with forced whitening","authors":"Hyuk-soo Shin, Wonzoo Chung","doi":"10.1109/IWW-BCI.2017.7858161","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using forced whitened sample covariance matrices as features. The proposed method performs a constant-forcing to the weaker sources of covariance matrices before a whitening process to prevent amplifications of noise sources which have small power relative to class relevant sources. Experimental results show the improved accuracy in comparison with a classification without forced whitening process.","PeriodicalId":443427,"journal":{"name":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2017.7858161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a novel motor imagery classification method in electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) using forced whitened sample covariance matrices as features. The proposed method performs a constant-forcing to the weaker sources of covariance matrices before a whitening process to prevent amplifications of noise sources which have small power relative to class relevant sources. Experimental results show the improved accuracy in comparison with a classification without forced whitening process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于传感器协方差矩阵强制白化的脑机接口方法
本文提出了一种基于脑机接口(bci)的运动图像分类新方法,该方法采用强制白化样本协方差矩阵作为特征。该方法在进行白化处理前对协方差矩阵的弱源进行恒强迫处理,以防止相对于类相关源功率较小的噪声源的放大。实验结果表明,与不加强制白化处理的分类方法相比,该分类方法的准确率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bimanual Arm Movements Decoding using Hybrid Method Single-trial analysis of readiness potentials for lower limb exoskeleton control Towards a whole body brain-machine interface system for decoding expressive movement intent Challenges and Opportunities Design and evaluation of a P300-ERP based BCI system for real-time control of a mobile robot A brain-computer interface speller using peripheral stimulus-based SSVEP and P300
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1