Classification of pancreas tumor dataset using adaptive weighted k nearest neighbor algorithm

Mahmut Kaya, H. Ş. Bilge
{"title":"Classification of pancreas tumor dataset using adaptive weighted k nearest neighbor algorithm","authors":"Mahmut Kaya, H. Ş. Bilge","doi":"10.1109/INISTA.2014.6873626","DOIUrl":null,"url":null,"abstract":"k nearest neighbor algorithm is a widely used classifier. It benefits from distances among features to classify the data. Classifiers based on distance metrics are affected from irrelevant or redundant features. Especially, it is valid for big datasets. So, some of features can be weighted with higher coefficients to reduce the effect of irrelevant or redundant features. We suggest adaptive weighted k nearest neighbor algorithm to increase classification accuracy. This algorithm uses t test which is one of the feature selection to weight features. Classification accuracy is increased from 74.14% to 86.57% for k=3 neighbors and Euclidean distance metric thanks to the proposed method.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

k nearest neighbor algorithm is a widely used classifier. It benefits from distances among features to classify the data. Classifiers based on distance metrics are affected from irrelevant or redundant features. Especially, it is valid for big datasets. So, some of features can be weighted with higher coefficients to reduce the effect of irrelevant or redundant features. We suggest adaptive weighted k nearest neighbor algorithm to increase classification accuracy. This algorithm uses t test which is one of the feature selection to weight features. Classification accuracy is increased from 74.14% to 86.57% for k=3 neighbors and Euclidean distance metric thanks to the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应加权k近邻算法的胰腺肿瘤数据集分类
K近邻算法是一种应用广泛的分类器。它得益于特征之间的距离来对数据进行分类。基于距离度量的分类器受到不相关或冗余特征的影响。尤其对于大数据集是有效的。因此,一些特征可以用更高的系数来加权,以减少不相关或冗余特征的影响。我们提出了自适应加权k近邻算法来提高分类精度。该算法使用特征选择之一的t检验对特征进行加权。该方法将k=3个邻域和欧氏距离度量的分类准确率从74.14%提高到86.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1