Development of Dense Plasma Foci as Advanced Neutron Sources at LLNL

A. Povilus, Y. Podpaly, L. Cooper, B. Shaw, S. Chapman, E. Koh, S. Falabella, A. Schmidt
{"title":"Development of Dense Plasma Foci as Advanced Neutron Sources at LLNL","authors":"A. Povilus, Y. Podpaly, L. Cooper, B. Shaw, S. Chapman, E. Koh, S. Falabella, A. Schmidt","doi":"10.1109/PLASMA.2017.8496271","DOIUrl":null,"url":null,"abstract":"The dense plasma focus (DPF) is a z-pinch device that starts as a coaxial plasma railgun and ends in an implosion phase. DPF's historically were developed as thermonuclear devices. When used with deuterium and tritium gases a DPF can be used to produce neutrons; however, in operation, DPF's often suffered from inconsistent behavior, and the mechanisms driving the neutron production were poorly understood. Using kinetic modeling techniques recently developed at LLNL, we have gained insight into the mechanisms that lead to particle acceleration in the pinch region and can make informed design decisions for optimizing DPF behavior, from sub-kilojoule to mega-joule scale devices. Experimental DPF platforms at LLNL also serve to validate the behaviors seen in simulations and improve device performance with a view towards increased neutron generation, enhanced reproducibility, and decreased size and energy requirements.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dense plasma focus (DPF) is a z-pinch device that starts as a coaxial plasma railgun and ends in an implosion phase. DPF's historically were developed as thermonuclear devices. When used with deuterium and tritium gases a DPF can be used to produce neutrons; however, in operation, DPF's often suffered from inconsistent behavior, and the mechanisms driving the neutron production were poorly understood. Using kinetic modeling techniques recently developed at LLNL, we have gained insight into the mechanisms that lead to particle acceleration in the pinch region and can make informed design decisions for optimizing DPF behavior, from sub-kilojoule to mega-joule scale devices. Experimental DPF platforms at LLNL also serve to validate the behaviors seen in simulations and improve device performance with a view towards increased neutron generation, enhanced reproducibility, and decreased size and energy requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密集等离子体聚焦作为LLNL先进中子源的发展
稠密等离子体聚焦(DPF)是一种z夹紧装置,它以同轴等离子体轨道炮开始,以内爆阶段结束。DPF历来是作为热核装置开发的。当与氘和氚气体一起使用时,DPF可以用来产生中子;然而,在实际操作中,DPF的行为经常不一致,并且人们对驱动中子产生的机制知之甚少。利用LLNL最近开发的动力学建模技术,我们已经深入了解了导致掐点区域粒子加速的机制,并可以做出明智的设计决策,以优化DPF行为,从亚千焦耳到兆焦耳规模的设备。LLNL的实验DPF平台也用于验证模拟中看到的行为,并提高设备性能,以期增加中子生成,增强再现性,减少尺寸和能量需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Amplification Due to the Two-Stream Instability of Self-Electric and Magnetic Fields of an Ion or Electron Beam Propagating in Background Plasma Surface Discharge Phenomena On Synthetic Ester-Pressboard Interface: Effect Of Moisture Investigating the Growth Modification of Various Plant Species via Atmospheric Pressure Plasma Jets Spectroscopic Measurements of the Formation of a Conical Section of Spherically Imploding Plasma Liners* The Effect of the Type of Gas on Underwater Discharge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1