Evolving Nonlinear Multigrid Methods With Grammar-Guided Genetic Programming

Dinesh Parthasarathy, J. Schmitt, H. Köstler
{"title":"Evolving Nonlinear Multigrid Methods With Grammar-Guided Genetic Programming","authors":"Dinesh Parthasarathy, J. Schmitt, H. Köstler","doi":"10.1145/3583133.3590734","DOIUrl":null,"url":null,"abstract":"We formulate a formal grammar to generate Full Approximation Scheme multigrid solvers. Then, using Grammar-Guided Genetic Programming we perform a multiobjective optimization to find optimal instances of such solvers for a given nonlinear system of equations. This approach is evaluated for a two-dimensional Poisson problem with added nonlinearities. We observe that the evolved solvers outperform the baseline methods by having a faster runtime and a higher convergence rate.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate a formal grammar to generate Full Approximation Scheme multigrid solvers. Then, using Grammar-Guided Genetic Programming we perform a multiobjective optimization to find optimal instances of such solvers for a given nonlinear system of equations. This approach is evaluated for a two-dimensional Poisson problem with added nonlinearities. We observe that the evolved solvers outperform the baseline methods by having a faster runtime and a higher convergence rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语法导向遗传规划的非线性多网格演化方法
我们制定了一个形式化语法来生成全近似方案多网格求解器。然后,使用语法引导遗传规划,我们执行多目标优化,以找到给定非线性方程组的这种求解器的最优实例。用该方法对二维非线性泊松问题进行了评价。我们观察到,进化的求解器具有更快的运行时间和更高的收敛速度,优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1