{"title":"Effect of laser pulse duration on damage to metal mirrors for laser IFE","authors":"J. Pulsifer, M. Tillack, S. S. Harilal","doi":"10.1117/12.752940","DOIUrl":null,"url":null,"abstract":"A Grazing Incidence Metal Mirror (GIMM) is a chief candidate for beam delivery for Inertial Fusion Energy (IFE). The goal for GIMM survival is greater than 3×108 laser pulses with 5 J/cm2 laser fluence normal to the incident beam. Laser-induced damage to metal mirrors is primarily a thermomechanical process. Long-term exposure leads to microstructural evolution analogous to fatigue. We have performed laser-induced damage experiments on high damage threshold aluminum mirrors using commercial KrF excimer (248 nm) lasers. We have studied mirror response to standard, 25 ns long-pulses as well as to IFE prototypic, 5 ns short-pulses achieved using a Pockels Cell. Short-pulse damage fluence was found to be better than predicted using simple thermal diffusion scaling from long-pulse results.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.752940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A Grazing Incidence Metal Mirror (GIMM) is a chief candidate for beam delivery for Inertial Fusion Energy (IFE). The goal for GIMM survival is greater than 3×108 laser pulses with 5 J/cm2 laser fluence normal to the incident beam. Laser-induced damage to metal mirrors is primarily a thermomechanical process. Long-term exposure leads to microstructural evolution analogous to fatigue. We have performed laser-induced damage experiments on high damage threshold aluminum mirrors using commercial KrF excimer (248 nm) lasers. We have studied mirror response to standard, 25 ns long-pulses as well as to IFE prototypic, 5 ns short-pulses achieved using a Pockels Cell. Short-pulse damage fluence was found to be better than predicted using simple thermal diffusion scaling from long-pulse results.