Generic and Trend-aware Curriculum Learning for Relation Extraction

Nidhi Vakil, Hadi Amiri
{"title":"Generic and Trend-aware Curriculum Learning for Relation Extraction","authors":"Nidhi Vakil, Hadi Amiri","doi":"10.48550/arXiv.2205.08625","DOIUrl":null,"url":null,"abstract":"We present a generic and trend-aware curriculum learning approach that effectively integrates textual and structural information in text graphs for relation extraction between entities, which we consider as node pairs in graphs. The proposed model extends existing curriculum learning approaches by incorporating sample-level loss trends to better discriminate easier from harder samples and schedule them for training. The model results in a robust estimation of sample difficulty and shows sizable improvement over the state-of-the-art approaches across several datasets.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.08625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a generic and trend-aware curriculum learning approach that effectively integrates textual and structural information in text graphs for relation extraction between entities, which we consider as node pairs in graphs. The proposed model extends existing curriculum learning approaches by incorporating sample-level loss trends to better discriminate easier from harder samples and schedule them for training. The model results in a robust estimation of sample difficulty and shows sizable improvement over the state-of-the-art approaches across several datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向关系抽取的通用和趋势感知课程学习
我们提出了一种通用的趋势感知课程学习方法,该方法有效地集成了文本图中的文本和结构信息,用于实体之间的关系提取,我们将实体视为图中的节点对。提出的模型扩展了现有的课程学习方法,通过纳入样本水平的损失趋势来更好地区分容易和困难的样本,并安排它们进行训练。该模型对样本难度进行了稳健的估计,并在多个数据集上显示出比最先进的方法有相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Synthetic Data for Back Translation Mining Clues from Incomplete Utterance: A Query-enhanced Network for Incomplete Utterance Rewriting Using Paraphrases to Study Properties of Contextual Embeddings GMN: Generative Multi-modal Network for Practical Document Information Extraction Domain Confused Contrastive Learning for Unsupervised Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1