Artificial neural networks in the discrimination of Alzheimer's disease using biomarkers data

Almir Aljović, A. Badnjević, Lejla Gurbeta
{"title":"Artificial neural networks in the discrimination of Alzheimer's disease using biomarkers data","authors":"Almir Aljović, A. Badnjević, Lejla Gurbeta","doi":"10.1109/MECO.2016.7525762","DOIUrl":null,"url":null,"abstract":"This paper presents the results of a study developing artificial neural network system (ANN) for classification of Alzheimer's disease (AD) and healthy patients. The classification is done using biomarkers, from cerebrospinal fluid: albumin ratio (CSF/Serum and/or Plasma), Aβ40 (CSF), Aβ42 (CSF), tau-total (CSF) and tau-phospho (CSF). Neural network input parameters are datasets from Alzbiomarkers database. Independent t-test is used to calculate statistical difference between input parameters. Developed neural network was validated with 80 subjects from Alzbiomarkers database. Out of 45 AD subjects, 43 were correctly classified as AD patients, obtaining a sensitivity of 95.5%, and out of 35 healthy subjects 32 were correctly classified obtaining specificity of 91.43%.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

This paper presents the results of a study developing artificial neural network system (ANN) for classification of Alzheimer's disease (AD) and healthy patients. The classification is done using biomarkers, from cerebrospinal fluid: albumin ratio (CSF/Serum and/or Plasma), Aβ40 (CSF), Aβ42 (CSF), tau-total (CSF) and tau-phospho (CSF). Neural network input parameters are datasets from Alzbiomarkers database. Independent t-test is used to calculate statistical difference between input parameters. Developed neural network was validated with 80 subjects from Alzbiomarkers database. Out of 45 AD subjects, 43 were correctly classified as AD patients, obtaining a sensitivity of 95.5%, and out of 35 healthy subjects 32 were correctly classified obtaining specificity of 91.43%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络在阿尔茨海默病生物标志物识别中的应用
本文介绍了一项开发人工神经网络系统(ANN)用于阿尔茨海默病(AD)和健康患者分类的研究结果。使用脑脊液中的生物标志物进行分类:白蛋白比率(CSF/血清和/或血浆)、Aβ40 (CSF)、Aβ42 (CSF)、tau-total (CSF)和tau-phospho (CSF)。神经网络输入参数为Alzbiomarkers数据库数据集。使用独立t检验计算输入参数之间的统计差异。利用Alzbiomarkers数据库中的80名受试者对所建立的神经网络进行验证。45例AD患者中,43例正确分类为AD患者,敏感性为95.5%;35例健康者中,32例正确分类,特异性为91.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1