Improving Document Image Understanding with Reinforcement Finetuning

Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan-Anh Dang Nguyen, Minh Le Nguyen, Hung Le
{"title":"Improving Document Image Understanding with Reinforcement Finetuning","authors":"Bao-Sinh Nguyen, Dung Tien Le, Hieu M. Vu, Tuan-Anh Dang Nguyen, Minh Le Nguyen, Hung Le","doi":"10.48550/arXiv.2209.12561","DOIUrl":null,"url":null,"abstract":"Successful Artificial Intelligence systems often require numerous labeled data to extract information from document images. In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited. We address the problem by proposing a novel finetuning method using reinforcement learning. Our approach treats the Information Extraction model as a policy network and uses policy gradient training to update the model to maximize combined reward functions that complement the traditional cross-entropy losses. Our experiments on four datasets using labels and expert feedback demonstrate that our finetuning mechanism consistently improves the performance of a state-of-the-art information extractor, especially in the small training data regime.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.12561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Successful Artificial Intelligence systems often require numerous labeled data to extract information from document images. In this paper, we investigate the problem of improving the performance of Artificial Intelligence systems in understanding document images, especially in cases where training data is limited. We address the problem by proposing a novel finetuning method using reinforcement learning. Our approach treats the Information Extraction model as a policy network and uses policy gradient training to update the model to maximize combined reward functions that complement the traditional cross-entropy losses. Our experiments on four datasets using labels and expert feedback demonstrate that our finetuning mechanism consistently improves the performance of a state-of-the-art information extractor, especially in the small training data regime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强微调提高文档图像理解能力
成功的人工智能系统通常需要大量标记数据来从文档图像中提取信息。在本文中,我们研究了提高人工智能系统在理解文档图像方面的性能的问题,特别是在训练数据有限的情况下。我们通过提出一种新的使用强化学习的微调方法来解决这个问题。我们的方法将信息提取模型视为一个策略网络,并使用策略梯度训练来更新模型,以最大化组合奖励函数,以补充传统的交叉熵损失。我们在使用标签和专家反馈的四个数据集上的实验表明,我们的微调机制始终如一地提高了最先进的信息提取器的性能,特别是在小型训练数据体系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Searching for Minimal Integer Representation of Undirected Graphs Mastering Complex Coordination Through Attention-Based Dynamic Graph FIT: Frequency-based Image Translation for Domain Adaptive Object Detection Emotion Detection in Unfix-length-Context Conversation Rethinking Voxelization and Classification for 3D Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1