Simulations of COVID-19 spread by spatial agent-based model and ordinary differential equations

S. Bai
{"title":"Simulations of COVID-19 spread by spatial agent-based model and ordinary differential equations","authors":"S. Bai","doi":"10.1504/ijspm.2020.10029411","DOIUrl":null,"url":null,"abstract":"The COVID-19 outbreak is currently the biggest public health issue in the world. In this paper, the epidemic spread is modelled via two structurally different approaches, a system of first-order ordinary differential equations (ODEs) and spatial agent-based model (ABM). Specific intervention strategies are introduced and the effectiveness of the strategies can be assessed by comparing the results with/without these strategies. The simulation results are qualitatively affected by different parameter settings of the ODEs-based model; hence precision of input parameters characterising the spread is of great importance. The implementation of spatial ABM brings novel features to the epidemics modelling: new states being easily incorporated; the parameter illustrating the moving willingness of people; and sub-models for hospital beds to reflect demands of medical resources. Our results suggest that the flexible characteristics of ABM render it a useful addition to the tool set of epidemics simulation models so as to figure out new effective strategies.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2020.10029411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The COVID-19 outbreak is currently the biggest public health issue in the world. In this paper, the epidemic spread is modelled via two structurally different approaches, a system of first-order ordinary differential equations (ODEs) and spatial agent-based model (ABM). Specific intervention strategies are introduced and the effectiveness of the strategies can be assessed by comparing the results with/without these strategies. The simulation results are qualitatively affected by different parameter settings of the ODEs-based model; hence precision of input parameters characterising the spread is of great importance. The implementation of spatial ABM brings novel features to the epidemics modelling: new states being easily incorporated; the parameter illustrating the moving willingness of people; and sub-models for hospital beds to reflect demands of medical resources. Our results suggest that the flexible characteristics of ABM render it a useful addition to the tool set of epidemics simulation models so as to figure out new effective strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间主体模型和常微分方程的COVID-19传播模拟
新冠肺炎疫情是当前世界上最大的公共卫生问题。本文通过两种结构不同的方法,一阶常微分方程(ode)系统和基于空间主体的模型(ABM)来建模流行病的传播。介绍了具体的干预策略,并通过比较有/没有这些策略的结果来评估这些策略的有效性。基于odes模型的不同参数设置对仿真结果有定性影响;因此,表征扩散的输入参数的精度非常重要。空间ABM的实施为流行病建模带来了新的特点:易于纳入新的状态;表示人们移动意愿的参数;病床子模型,反映医疗资源需求。我们的研究结果表明,ABM的灵活特性使其成为流行病模拟模型工具集的有用补充,从而找出新的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic jam prediction using hazardous material transportation management simulation Evaluating the impact of shared situational awareness on combat effectiveness in symmetric engagements Realistic scenario modelling for building power supply and distribution system based on non-intrusive load monitoring Acoustic performance and modal analysis for the muffler of a four-stroke three-cylinder inline spark ignition engine Utilising scenario-based simulation modelling to optimise aircraft inspection scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1