Automatic depiction of onomatopoeia in animation considering physical phenomena

Tsukasa Fukusato, S. Morishima
{"title":"Automatic depiction of onomatopoeia in animation considering physical phenomena","authors":"Tsukasa Fukusato, S. Morishima","doi":"10.1145/2668064.2668096","DOIUrl":null,"url":null,"abstract":"This paper presents a method that enables the estimation and depiction of onomatopoeia in computer-generated animation based on physical parameters. Onomatopoeia is used to enhance physical characteristics and movement, and enables users to understand animation more intuitively. We experiment with onomatopoeia depiction in scenes within the animation process. To quantify onomatopoeia, we employ Komatsu's [2012] assumption, i.e., onomatopoeia can be expressed by n-dimensional vector. We also propose phonetic symbol vectors based on the correspondence of phonetic symbols to the impressions of onomatopoeia using a questionnaire-based investigation. Furthermore, we verify the positioning of onomatopoeia in animated scenes. The algorithms directly combine phonetic symbols to estimate optimum onomatopoeia. They use a view-dependent Gaussian function to display onomatopoeias in animated scenes. Our method successfully recommends optimum onomatopoeias using only physical parameters, so that even amateur animators can easily create onomatopoeia animation.","PeriodicalId":138747,"journal":{"name":"Proceedings of the 7th International Conference on Motion in Games","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2668064.2668096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a method that enables the estimation and depiction of onomatopoeia in computer-generated animation based on physical parameters. Onomatopoeia is used to enhance physical characteristics and movement, and enables users to understand animation more intuitively. We experiment with onomatopoeia depiction in scenes within the animation process. To quantify onomatopoeia, we employ Komatsu's [2012] assumption, i.e., onomatopoeia can be expressed by n-dimensional vector. We also propose phonetic symbol vectors based on the correspondence of phonetic symbols to the impressions of onomatopoeia using a questionnaire-based investigation. Furthermore, we verify the positioning of onomatopoeia in animated scenes. The algorithms directly combine phonetic symbols to estimate optimum onomatopoeia. They use a view-dependent Gaussian function to display onomatopoeias in animated scenes. Our method successfully recommends optimum onomatopoeias using only physical parameters, so that even amateur animators can easily create onomatopoeia animation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑物理现象的动画中拟声词的自动描述
本文提出了一种基于物理参数的计算机生成动画中拟声词的估计和描述方法。拟声词用于增强物理特征和动作,使用户更直观地理解动画。我们在动画过程中尝试在场景中使用拟声词。为了量化拟声词,我们采用Komatsu[2012]的假设,即拟声词可以用n维向量表示。我们还通过问卷调查提出了基于音标与拟声词印象对应的音标向量。此外,我们验证了拟声词在动画场景中的定位。该算法直接结合音标来估计最佳拟声词。他们使用一个依赖于视图的高斯函数来显示动画场景中的拟声词。我们的方法成功地推荐了仅使用物理参数的最佳拟声词,因此即使是业余动画师也可以轻松地创建拟声词动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deformation, parameterization and analysis of a single locomotion cycle Facial retargeting using neural networks Design and evaluation of a sketch-based gesture animation tool Computing high-quality paths in weighted regions Following behaviors: a model for computing following distances based on prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1