ACO-FFDP in incremental clustering for big data analysis

Fadwa Bouhafer, M. Heyouni, Anass El Haddadi, Zakaria Boulouard
{"title":"ACO-FFDP in incremental clustering for big data analysis","authors":"Fadwa Bouhafer, M. Heyouni, Anass El Haddadi, Zakaria Boulouard","doi":"10.1145/3286606.3286782","DOIUrl":null,"url":null,"abstract":"The development of dyamic information analysis, like incremental clustering, is becoming a very important concern in big data. In this paper, we will propose a new incremental clustering algorithm, called \"ACO-FFDP-Incremental-Cluster\". This algorithm is a combination between \"FFDP\" a large graph visualization algorithm developed by our team, and \"ACO Algorithm\". FFDP will set an equilibrium positioning of the large graph; then it will provide the nodes final positions as a vector of coordinates. ACO algorithm will take this vector into consideration and try to find the best clustering configuration possible for new data.","PeriodicalId":416459,"journal":{"name":"Proceedings of the 3rd International Conference on Smart City Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Smart City Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3286606.3286782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of dyamic information analysis, like incremental clustering, is becoming a very important concern in big data. In this paper, we will propose a new incremental clustering algorithm, called "ACO-FFDP-Incremental-Cluster". This algorithm is a combination between "FFDP" a large graph visualization algorithm developed by our team, and "ACO Algorithm". FFDP will set an equilibrium positioning of the large graph; then it will provide the nodes final positions as a vector of coordinates. ACO algorithm will take this vector into consideration and try to find the best clustering configuration possible for new data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ACO-FFDP的大数据增量聚类分析
动态信息分析的发展,如增量聚类,正在成为大数据中一个非常重要的关注点。在本文中,我们将提出一种新的增量聚类算法,称为“ACO-FFDP-Incremental-Cluster”。该算法是我们团队开发的大型图形可视化算法“FFDP”与“蚁群算法”的结合。FFDP会设置一个大图形的均衡定位;然后它将以坐标向量的形式提供节点的最终位置。蚁群算法将考虑这个向量,并尝试为新数据找到可能的最佳聚类配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
5G Assessing the Critical Sources of Wastes in the Moroccan Construction Industry: An Empirical Study Marketing and smart city: a new model of urban development for cities in Morocco Usage of watermarking techniques in medical imaging Effectiveness of quantum algorithms on classical computing complexities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1