Residual BiRNN Based Seq2Seq Model with Transition Probability Matrix for Online Handwritten Mathematical Expression Recognition

Zelin Hong, Ning You, J. Tan, Ning Bi
{"title":"Residual BiRNN Based Seq2Seq Model with Transition Probability Matrix for Online Handwritten Mathematical Expression Recognition","authors":"Zelin Hong, Ning You, J. Tan, Ning Bi","doi":"10.1109/ICDAR.2019.00107","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Seq2Seq model for online handwritten mathematical expression recognition (OHMER), which consists of two major parts: a residual bidirectional RNN (BiRNN) based encoder that takes handwritten traces as the input and a transition probability matrix introduced decoder that generates LaTeX notations. We employ residual connection in the BiRNN layers to improve feature extraction. Markovian transition probability matrix is introduced in decoder and long-term information can be used in each decoding step through joint probability. Furthermore, we analyze the impact of the novel encoder and transition probability matrix through several specific instances. Experimental results on the CROHME 2014 and CROHME 2016 competition tasks show that our model outperforms the previous state-of-the-art single model by only using the official training dataset.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we present a Seq2Seq model for online handwritten mathematical expression recognition (OHMER), which consists of two major parts: a residual bidirectional RNN (BiRNN) based encoder that takes handwritten traces as the input and a transition probability matrix introduced decoder that generates LaTeX notations. We employ residual connection in the BiRNN layers to improve feature extraction. Markovian transition probability matrix is introduced in decoder and long-term information can be used in each decoding step through joint probability. Furthermore, we analyze the impact of the novel encoder and transition probability matrix through several specific instances. Experimental results on the CROHME 2014 and CROHME 2016 competition tasks show that our model outperforms the previous state-of-the-art single model by only using the official training dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于转移概率矩阵残差BiRNN的在线手写数学表达式识别Seq2Seq模型
在本文中,我们提出了一个用于在线手写数学表达式识别(OHMER)的Seq2Seq模型,该模型由两个主要部分组成:一个基于残差双向RNN (BiRNN)的编码器,该编码器以手写轨迹作为输入;一个引入转移概率矩阵的解码器,该解码器生成LaTeX符号。我们在BiRNN层中使用残差连接来改进特征提取。在解码器中引入马尔可夫转移概率矩阵,通过联合概率在每一步解码中获取长期信息。此外,我们还通过几个具体实例分析了新编码器和转移概率矩阵的影响。在CROHME 2014和CROHME 2016比赛任务上的实验结果表明,我们的模型在只使用官方训练数据集的情况下优于之前最先进的单一模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1