{"title":"Fabrication of a low-voltage light emitting device based on carbon nanotubes and rare-earth doped nanocrystals","authors":"P. Psuja, W. Stręk, D. Hreniak","doi":"10.1109/STYSW.2005.1617799","DOIUrl":null,"url":null,"abstract":"Field emission displays using carbon nanotubes (CNT-FEDs) are ones of the most promising devices which can compete with other technologies such as liquid crystal displays (LCDs). Good picture quality, a low power consumption, a wide work temperature range and a high efficiency of luminescence are the great advantages of that technology. In this work, new and a low-cost method of electrophoretic deposition of CNTs on the ITO-glass slide is presented. Deposition of the light emitting layer was also done by the same method. The Eu3+:Y2O3 nanocrystalline phosphor prepared by modified Pechini method was used as emitting layer in tested the FED construction. The satisfied light intensity was observed under the vacuum level of about 1 times 10-5 Tr, and accelerating voltage of 500 V. Application of other rare-earth ions doped nanocrystalline phosphors in CNT-FED is discussed","PeriodicalId":351138,"journal":{"name":"Proceedings of 2005 International Students and Young Scientists Workshop Photonics and Microsystems, 2005.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2005 International Students and Young Scientists Workshop Photonics and Microsystems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STYSW.2005.1617799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Field emission displays using carbon nanotubes (CNT-FEDs) are ones of the most promising devices which can compete with other technologies such as liquid crystal displays (LCDs). Good picture quality, a low power consumption, a wide work temperature range and a high efficiency of luminescence are the great advantages of that technology. In this work, new and a low-cost method of electrophoretic deposition of CNTs on the ITO-glass slide is presented. Deposition of the light emitting layer was also done by the same method. The Eu3+:Y2O3 nanocrystalline phosphor prepared by modified Pechini method was used as emitting layer in tested the FED construction. The satisfied light intensity was observed under the vacuum level of about 1 times 10-5 Tr, and accelerating voltage of 500 V. Application of other rare-earth ions doped nanocrystalline phosphors in CNT-FED is discussed