Extraction of parasitics in GaN HEMTs via Full-Wave Electromagnetic Modeling

Y. Karisan, K. Sertel
{"title":"Extraction of parasitics in GaN HEMTs via Full-Wave Electromagnetic Modeling","authors":"Y. Karisan, K. Sertel","doi":"10.1109/NAECON.2014.7045822","DOIUrl":null,"url":null,"abstract":"We present a new equivalent circuit model for millimeter-wave and sub-millimeter wave GaN high electron mobility transistors (HEMTs) that can capture the geometry-and material-dependent parasitic effects within the device. The impact of electromagnetic interactions on overall device performance is analyzed extensively via full-wave EM simulations using high-fidelity device geometries. An empirical lumped-element equivalent circuit model is developed to capture the electromagnetic behavior not only within the internal structure of the device but also the surrounding impedance environment. Based on this parasitic-aware equivalent circuit, a multiple-step parameter extraction algorithm is employed to determine the equivalent lumped elements. Numerical results, using a conventional sub-mmW HEMT topology are presented to illustrate the performance of the proposed circuit models in capturing device physics in the THz band.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a new equivalent circuit model for millimeter-wave and sub-millimeter wave GaN high electron mobility transistors (HEMTs) that can capture the geometry-and material-dependent parasitic effects within the device. The impact of electromagnetic interactions on overall device performance is analyzed extensively via full-wave EM simulations using high-fidelity device geometries. An empirical lumped-element equivalent circuit model is developed to capture the electromagnetic behavior not only within the internal structure of the device but also the surrounding impedance environment. Based on this parasitic-aware equivalent circuit, a multiple-step parameter extraction algorithm is employed to determine the equivalent lumped elements. Numerical results, using a conventional sub-mmW HEMT topology are presented to illustrate the performance of the proposed circuit models in capturing device physics in the THz band.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全波电磁建模提取GaN hemt中的寄生效应
我们提出了一种新的毫米波和亚毫米波GaN高电子迁移率晶体管(hemt)等效电路模型,该模型可以捕获器件内的几何和材料依赖的寄生效应。通过使用高保真器件几何形状的全波电磁模拟,广泛分析了电磁相互作用对器件整体性能的影响。建立了一个经验集总元等效电路模型,不仅可以捕捉器件内部结构内的电磁行为,还可以捕捉周围的阻抗环境。基于该寄生感知等效电路,采用多步参数提取算法确定等效集总元件。采用传统的亚毫米波HEMT拓扑给出了数值结果,以说明所提出的电路模型在捕获太赫兹波段器件物理特性方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing surface plasmonic structures for high infrared photodetector enhancement Surface plasmon enhanced rare earth fluorescence for increased imaging efficiency Construction of a twin-pier platform for biological sensing 10 bit current steering DAC in 90 nm technology Photonic jets for strained-layer superlattice infrared photodetector enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1