Predictive Analysis for Modeling Travel Decision Making

R. Keerthi, P. Lakshmi
{"title":"Predictive Analysis for Modeling Travel Decision Making","authors":"R. Keerthi, P. Lakshmi","doi":"10.1109/ICGCIOT.2018.8753103","DOIUrl":null,"url":null,"abstract":"The exponential rise in technologies has opened up a gigantic scope to exploit the data for better decision making. The evolution of social media has contributed humungous information including ratings, reviews and comments. Considering the significance of an efficient predictive analysis model for the tourist destination prediction, in the proposed work robust technologies have been applied to perform the destination prediction. This work contributes to the technique of developing a novel Destination Prediction Model that corresponds to the tourist’s preferences.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential rise in technologies has opened up a gigantic scope to exploit the data for better decision making. The evolution of social media has contributed humungous information including ratings, reviews and comments. Considering the significance of an efficient predictive analysis model for the tourist destination prediction, in the proposed work robust technologies have been applied to perform the destination prediction. This work contributes to the technique of developing a novel Destination Prediction Model that corresponds to the tourist’s preferences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
出行决策建模的预测分析
技术的指数级增长为利用数据做出更好的决策开辟了一个巨大的空间。社交媒体的发展提供了大量的信息,包括评分、评论和评论。考虑到有效的预测分析模型对旅游目的地预测的重要性,本文采用鲁棒技术进行目的地预测。这项工作有助于开发一种符合游客偏好的新型目的地预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Holistic Approach For Patient Health Care Monitoring System Through IoT Pomegranate Diseases and Detection using Sensors: A Review Energy Efficient Optimal Path based coded transmission for multi-sink and multi-hop WSN Iot Based Smart Shopping Mall Visual screens in Canteens providing Real Time information of Food Wastage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1