SHAPING OF EXPANDING CHANNEL FOR PRODUCING PLANAR DETONATIONS AT OPEN END

V. S. Aksenov, S. Frolov, I. A. Sadykov, I. O. Shamshin, A. S. Silantiev, V. A. Smetanyuk
{"title":"SHAPING OF EXPANDING CHANNEL FOR PRODUCING PLANAR DETONATIONS AT OPEN END","authors":"V. S. Aksenov, S. Frolov, I. A. Sadykov, I. O. Shamshin, A. S. Silantiev, V. A. Smetanyuk","doi":"10.30826/icpcd13a24","DOIUrl":null,"url":null,"abstract":"In [1], the innovative technology is proposed for pulsed detonation stamping of thin sheet parts. The technology consists in periodically exposing a workpiece to detonation waves and hot gaseous detonation products. The distinctive feature of the technology is the absence of a punch (the mating part of a pro¦led matrix). Compared to the detonation of condensed explosives, the use of gaseous detonation for stamping allows multiple periodic gasdynamic and thermal impact on a workpiece and simpli¦es the execution of technical supervision requirements. Due to the combined gasdynamic and thermal e¨ects of gas detonation on the workpiece, the new technology makes it possible to stamp workpieces made from brittle heat-resistant alloys without the use of expensive hot stamping technologies. A laboratory setup (Fig. 1) for pulsed detonation stamping has been created. The main part of the installation is a thick-walled expanding §at vertical channel with a volume of 30 l. In the lower narrow part of the channel, there is a prechamber with a mixing device and spark plugs. In the upper wide part of the channel, there is a §at §ange with a pro- ¦led matrix and fastening for a workpiece. The setup allows heating the workpiece and matrix with gas burners and operates as follows. Firstly, the channel is ¦lled through the prechamber with a stoichiometric methane oxygen mixture. Secondly, the mixture is ignited by spark plugs, and the arising §ame is transitioned to detonation. Finally, once a detonation wave is formed, it propagates along the channel and re§ects from the heated workpiece exerting a mechanical and thermal e¨ect on it. By changing the degree of channel ¦ll with an explosive mixture and cycle frequency, one can vary the intensity of the impact on the workpiece as well as the temperature of the workpiece and matrix. The duty cycle of the pulses can vary from 10 to 30 s. The shape of the expanding §at vertical channel must ensure that the workpiece is subjected to a planar detonation wave to avoid nonuniform deformation. For estimating the §ow pattern ahead of the workpiece and the parameters of the incident detonation wave, multivariate three-dimensional numerical simulations were performed. Calculations provided pressure and temperature ¦eld evolution ahead of the workpiece for di¨erent shapes of the expanding channel and allowed choosing the optimal channel shape. The characteristic time of mechanical and thermal action of a detonation wave on the workpiece was estimated at 0.1 and 10 ms, respectively. Experiments showed that the developed technology made it possible to stamp thin sheet parts of complex shape made from various materials, including brittle heat-resistant alloys. As an example, Fig. 2 shows a photograph of the stamping product.","PeriodicalId":326374,"journal":{"name":"ADVANCES IN DETONATION RESEARCH","volume":"101 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADVANCES IN DETONATION RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30826/icpcd13a24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In [1], the innovative technology is proposed for pulsed detonation stamping of thin sheet parts. The technology consists in periodically exposing a workpiece to detonation waves and hot gaseous detonation products. The distinctive feature of the technology is the absence of a punch (the mating part of a pro¦led matrix). Compared to the detonation of condensed explosives, the use of gaseous detonation for stamping allows multiple periodic gasdynamic and thermal impact on a workpiece and simpli¦es the execution of technical supervision requirements. Due to the combined gasdynamic and thermal e¨ects of gas detonation on the workpiece, the new technology makes it possible to stamp workpieces made from brittle heat-resistant alloys without the use of expensive hot stamping technologies. A laboratory setup (Fig. 1) for pulsed detonation stamping has been created. The main part of the installation is a thick-walled expanding §at vertical channel with a volume of 30 l. In the lower narrow part of the channel, there is a prechamber with a mixing device and spark plugs. In the upper wide part of the channel, there is a §at §ange with a pro- ¦led matrix and fastening for a workpiece. The setup allows heating the workpiece and matrix with gas burners and operates as follows. Firstly, the channel is ¦lled through the prechamber with a stoichiometric methane oxygen mixture. Secondly, the mixture is ignited by spark plugs, and the arising §ame is transitioned to detonation. Finally, once a detonation wave is formed, it propagates along the channel and re§ects from the heated workpiece exerting a mechanical and thermal e¨ect on it. By changing the degree of channel ¦ll with an explosive mixture and cycle frequency, one can vary the intensity of the impact on the workpiece as well as the temperature of the workpiece and matrix. The duty cycle of the pulses can vary from 10 to 30 s. The shape of the expanding §at vertical channel must ensure that the workpiece is subjected to a planar detonation wave to avoid nonuniform deformation. For estimating the §ow pattern ahead of the workpiece and the parameters of the incident detonation wave, multivariate three-dimensional numerical simulations were performed. Calculations provided pressure and temperature ¦eld evolution ahead of the workpiece for di¨erent shapes of the expanding channel and allowed choosing the optimal channel shape. The characteristic time of mechanical and thermal action of a detonation wave on the workpiece was estimated at 0.1 and 10 ms, respectively. Experiments showed that the developed technology made it possible to stamp thin sheet parts of complex shape made from various materials, including brittle heat-resistant alloys. As an example, Fig. 2 shows a photograph of the stamping product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开口端产生平面爆轰的膨胀通道的成形
[1]提出了薄板件脉冲爆震冲压的创新技术。该技术包括周期性地将工件暴露在爆震波和热气体爆轰产物中。该技术的独特之处在于没有冲孔(驱动矩阵的配合部分)。与压缩炸药爆轰相比,冲压用气体爆轰允许对工件进行多次周期性气动力和热冲击,简化了技术监督要求的执行。由于气体爆炸对工件的气体动力学和热效应的结合,新技术使冲压由脆性耐热合金制成的工件成为可能,而无需使用昂贵的热冲压技术。一个实验室装置(图1)脉冲爆轰冲压已经创建。该装置的主要部分是容积为30l的厚壁垂直通道,在通道的下部狭窄部分,有一个带有混合装置和火花塞的预室。在该通道的上部宽部,有一个带有导向矩阵和用于工件的紧固的§§范围。该装置允许用燃气燃烧器加热工件和基体,操作如下。首先,用化学计量甲烷-氧混合物将通道穿过预室。其次,由火花塞点燃混合物,并将产生的气体过渡到爆轰。最后,一旦爆震波形成,它沿着通道传播,并从被加热的工件反射,对其施加机械和热作用。通过改变爆炸混合物的通道度和循环频率,可以改变对工件的冲击强度以及工件和基体的温度。脉冲的占空比可以在10到30秒之间变化。在垂直通道处的膨胀§的形状必须保证工件受到平面爆震波的作用,以避免不均匀变形。为了估计工件前方的流场模式和入射爆震波参数,进行了多元三维数值模拟。计算提供了不同形状的膨胀通道在工件之前的压力场和温度场演变,并允许选择最佳的通道形状。爆震波对工件的机械作用和热作用的特征时间分别为0.1 ms和10 ms。实验表明,开发的技术使冲压由各种材料制成的复杂形状的薄板零件成为可能,包括脆性耐热合金。作为一个例子,图2显示了冲压产品的照片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
О МЕХАНИЗМЕ АЭРОАКУСТИЧЕСКОЕО ИНИЦИИРОВАНИЯ ПУЛВСИРУЮЩЕЕО КВАЗИДЕТОНАЦИОННОЕО ЕОРЕНИЯ В ЭЖЕКТОРНОМ ПУЛВСИРУЮЩЕМ ВОЗДУШНО-РЕАКТИВНОМ ДВИЕАТЕЛЕ НОВЫЕ РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ РАСПРОСТРАНЕНИЯ ДЕТОНАЦИИ В ВЯЗКОМ ТУРБУЛЕНТНОМ ТЕЧЕНИИ В КАНАЛЕ IMPROVEMENT OF IGNITION SYSTEM OF DETONATION ENGINES WITH AN INITIATED MICROWAVE SUBCRITICAL STREAMER DISCHARGE О НЕКОТОРЫХ ДИНАМИЧЕСКИХ ЯВЛЕНИЯХ ПРИ РАСПРОСТРАНЕНИИ ГАЗОВОЙ ДЕТОНАЦИИ В СРЕДЕ С ПЕРИОДИЧЕСКОЙ НЕОДНОРОДНОСТЬЮ ОПРЕДЕЛЕНИЕ ВРЕМЕН ИНДУКЦИИ И РЕАКЦИИ СМЕСЕЙ ВОДОРОДА С ВОЗДУХОМ ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1